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ABSTRACT 

Chronic stress can change how we learn and, thus, how we make decisions by promoting the formation of inflexible, 

potentially maladaptive, habits. Here we investigated the neuronal circuit mechanisms that enable this. Using a 

multifaceted approach in male and female mice, we reveal a dual pathway, amygdala-striatal, neuronal circuit 

architecture by which a recent history of chronic stress shapes learning to disrupt flexible goal-directed behavior 

in favor of inflexible habits. Chronic stress inhibits activity of basolateral amygdala projections to the dorsomedial 

striatum to impede the action-outcome learning that supports flexible, goal-directed decisions. Stress also 

increases activity in direct central amygdala projections to the dorsomedial striatum to promote the formation of 

rigid, inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to promote 

premature habit formation. These data provide neuronal circuit insights into how chronic stress shapes learning 

and decision making, and help understand how stress can lead to the disrupted decision making and pathological 

habits that characterize substance use disorders and other psychiatric conditions. 
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When making a decision, we can use what we have learned about our actions and their outcomes to prospectively 

evaluate the consequences of our potential choices1-3. This goal-directed strategy supports our agency. It allows 

us to choose actions that lead to desirable consequences and avoid those that lead to outcomes that are not 

currently beneficial. This strategy is, thus, highly flexible to changing circumstances. But we don’t always think 

about the consequences of our behavior. Often this is fine. Such habits are a way for our brain to efficiently execute 

routine behaviors based on past success, without forethought of their consequences4,2,5-7. The brain balances goal-

directed and habitual control to allow behavior to be adaptive when needed, yet efficient when appropriate8,9. But 

disrupted goal-directed control and overreliance on habit can cause inadequate consideration of consequences, 

inflexible behavior, a lower threshold for compulsivity, and disrupted decision making10-13. This can contribute to 

cognitive deficits in numerous diseases, including substance use disorder14-25, obsessive-compulsive disorder26-28, 

obesity12,21,29, schizophrenia30-32, depression31,33, anxiety34, and autism35. Chronic stress tips the balance of 

behavioral control towards habit36-60. Stress can change how we learn and, thus, how we make decisions, 

promoting inflexible habits. Because stress is a major predisposing factor for addiction and other psychiatric 

conditions61-66, understanding how stress promotes habit formation will illuminate one avenue of vulnerability for 

these conditions. Yet, despite importance for understanding adaptive and maladaptive behavior, little is known 

of the neuronal circuits that enable stress-potentiated habit formation. 

Amygdala-striatal projections are potential candidate pathways by which stress could bias learning and behavioral 

control strategy. The dorsomedial striatum (DMS) is an evolutionarily conserved hub for the action-outcome 

learning that supports goal-directed behavioral control4,67-75. Suppression of DMS activity prevents goal-directed 

control and promotes inflexible habits70,76. The basolateral amygdala (BLA) is needed for goal-directed behavior77-

79 and sends a direct excitatory projection to the DMS80-86. We know very little of the function of the BLADMS 

pathway, though it is well-positioned to facilitate the action-outcome learning that supports goal-directed behavior. 

Conversely, the central amygdala (CeA) has been implicated in habit79. It sends a direct, likely inhibitory87,88, 

projection to the striatum80,81. No function for this newly identified CeAstriatum pathway has yet to be reported 

but these projections are poised to oppose DMS function. Both the BLA and CeA are highly implicated in stress 

processing89-92. Thus, here we investigated whether chronic stress acts via these amygdala-striatal pathways to 

promote habit formation.  

 
RESULTS 

Chronic stress potentiates habit formation 

We first designed a behavioral procedure to model stress-potentiated habit formation in male and female mice 

(Figure 1a). Mice received 14 consecutive days of chronic mild unpredictable stress (CUS) including daily 

exposure to 2 of 6 stressors of variable duration at pseudorandom times and order: damp bedding (4-16 hrs), tilted 

cage (4-16 hr), white noise (80 db; 2-16 hr), continuous illumination during the dark phase (12 hr), physical restraint 

(2 hr), footshock (0.7-mA, 1-s, 5 shocks/10 min). We selected this stress protocol to model aspects of the repeated 

and varied nature of stress experienced by humans, including uncontrollable physical aversive events, disrupted 

sleep, and poor environmental conditions. Controls received equated handling. Demonstrating efficacy, serum 
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corticosterone levels were elevated (Figure 1b) and body weight was reduced (Figure 1c) in stressed mice relative 

to controls. This procedure was intentionally mild to model low-level chronic stress. Accordingly, it did not cause 

major anxiety- or depression-like phenotypes in classic assays of such behavior (Figure 1-1). 24 hours following 

the last stressor, mice were trained to lever press to earn a food-pellet reward. We used a random-ratio schedule 

of reinforcement to encourage action-outcome learning and goal-directed behavioral control8,93-96. Mice were food-

deprived for training and, thus, bodyweight did not differ between control and stressed mice during training 

(Supplemental Table 1). Control and stressed mice similarly acquired the instrumental behavior (Figure 1d). Thus, 

CUS does not cause general learning, motivational, or locomotor impairments. To evaluate behavioral control 

strategy, we used the gold-standard outcome-specific devaluation test2-4,7,67,97-100. Mice were given 90-min, non-

contingent access to the food pellet earned during training to induce a sensory-specific satiety rendering that 

specific food pellet temporarily devalued. Lever pressing was assessed in a 5-min, non-reinforced probe test 

immediately following the prefeeding. Performance was compared to that following satiation on an alternate food 

pellet to control for general satiety (Valued state; test order counterbalanced). Both control and stressed mice 

consumed similar amounts during the prefeed (Supplemental Table 2), indicating that CUS did not alter food 

consumption. CUS also did not affect outcome discrimination or devaluation efficacy. Both groups rejected the 

devalued outcome in a post-probe consumption choice test (Supplemental Table 3). If subjects have learned the 

action-outcome relationship and are using this to support prospective consideration of action consequences for 

flexible, goal-directed behavioral control, they will reduce lever pressing when the outcome is devalued relative to 

the valued state. We saw this effect in control subjects (Figure 1e-f; see also Supplemental Figure 1-2 for data on 

entries into the food-delivery port). Behavior in stressed mice was insensitive to devaluation, indicating the lack of 

consideration of action consequences that marks inflexible habits4,7,8,67,97. Thus, a recent history of chronic stress 

causes premature habit formation. 

 

 
Figure 1: A recent history of chronic stress potentiates habit formation. (a) Procedure schematic. CUS, chronic unpredictable mild 
stress. Valued state = prefed on untrained food-pellet type to control for general satiety. Devalued state = prefed on trained food-pellet 
type to induce sensory-specific satiety devaluation. (b) Blood serum corticosterone concentrations 24 hr after completion of 14 d of 1 
stressor/d, 2 stressors/d, or daily handling (Control). Stress: F(2, 20) = 17.35, P < 0.0001. Control: N = 8 (4 male), 1x CUS: N = 7 (3 male), 
2x CUS: N = 8 (4 male). (c) Percent change (Δ) in body weight averaged across the first 10 d of CUS on ad libitum food. t14 = 4.50, P = 
0.0005. N = 8/group (4 male). (d) Press rate across training following CUS (Stress) or daily handling control. Training: F(2.12, 95.32) = 168.20, 
P < 0.0001; Stress: F(1, 45) = 0.64, P = 0.43, Training x Stress: F(3, 135) = 0.15, P = 0.93. (e) Press rate during the subsequent devaluation 
probe test immediately following sensory-specific satiety devaluation of the trained pellet (Devalued) or an alternate pellet type (Valued). 
Stress x Value: F(1, 45) = 4.43, P = 0.04; Stress: F(1, 45) = 2.52, P = 0.12; Value: F(1, 45) = 4.88, P = 0.03. (f) Devaluation index [(Devalued 
condition presses)/(Valued condition presses + Devalued presses)]. t(45) = 2.99, P = 0.005. Control N = 22 (13 male), Stress N = 25 (12 
male). Males = closed circles/solid lines, Females = open circles/dashed lines. **P <0.01, ***P < 0.001. 
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Chronic stress attenuates BLADMS and engages CeADMS pathway activity during learning. 
We next confirmed the existence of direct BLA80-86 and CeA80,81 projections to dorsal striatum using both 

anterograde and retrograde tracing. We found that like the BLA, the CeA also directly projects the DMS 

(Supplemental Figure 2). We then characterized the activity of the BLADMS and CeADMS pathways during 

action-outcome learning and asked whether it is influenced by a recent history of chronic stress. We used fiber 

photometry to record fluorescent activity of the genetically encoded calcium indicator GCaMP8s expressed using 

an intersectional approach in either BLA or CeA neurons that project to the DMS (Figure 2a, b, d, j). Mice received 

14 consecutive days of CUS or daily handling control prior to being trained to lever press to earn a food-pellet 

reward, as above (Figure 2c). Again, both control and stressed mice similarly acquired the instrumental behavior 

(Figure 2e, k, see also Figure 2-1 for food-port entry data). Fiber photometry (473 nm calcium-dependent, 415 

nm isosbestic) recordings were made during each training session. BLADMS neurons were robustly activated 

by the earned reward during learning (Figure 2f-i). Thus, the BLADMS pathway is active when subjects are 

able to learn the rewarding consequence of their actions and form the action-outcome memories that support 

goal-directed behavioral control. This activity was absent in stressed mice (Figure 2g). Thus, recent chronic 

stress attenuates BLADMS activity associated with action-outcome learning. Conversely, CeADMS neurons 

are not robustly active during this form of instrumental learning, but chronic stress engages this pathway 

particularly around earned reward experience later in training (Figure 2l-o). Thus, chronic stress recruits the 

CeADMS pathway to instrumental learning. We detected similar patterns in response to unpredicted rewards 

in both pathways (Figure 2-2). Both BLADMS and CeADMS projections were acutely activated by 

unpredicted footshock and this was not altered by stress (Figure 2-2), providing a positive control for our ability 

to detect signal in all groups. This also indicates that neither BLADMS nor CeADMS activity is valence-

specific. Chronic stress did, however, reduce post-shock activity in the BLADMS pathway, consistent with its 

effects on reward signals in this pathway. Chronic stress did not alter baseline spontaneous calcium activity in 

either pathway, indicating it does not generally increase or decrease excitability in these pathways (Figure 2-3). 

Together these data indicate that a recent history of chronic stress oppositely modulates BLADMS and 

CeADMS projections during learning, turning off learning-related activity in the BLADMS pathway and 

instead engaging the CeADMS pathway. 
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Figure 2: Chronic stress attenuates BLADMS and engages CeADMS pathway activity during instrumental learning. (a) 
Intersectional approach for fiber photometry calcium imaging of DMS-projecting BLA or CeA neurons. (b) Schematic representation of 
retrograde AAV-cre in DMS and cre-dependent GCaMP8s expression and optical fiber tips in BLA or CeA for all subjects. (c) Procedure 
schematic. CUS, chronic unpredictable stress. (d-i) Fiber photometry recordings of GCaMP8s in BLADMS neurons during instrumental 
lever press – food-pellet reward learning. (d) Representative images of retro-cre expression in DMS and immunofluorescent staining of 
cre-dependent GCaMP8s expression and fiber placement in BLA. (e) Press rate across training following CUS (Stress) or daily handling 
control. Training: F(1.72, 32.66) = 81.40, P < 0.0001; Stress: F(1, 19) = 2.25, P = 0.15; Training x Stress: F(3, 57) = 3.19, P = 0.03. (f-g) Trial-
averaged Z-scored Δf/F BLADMS GCaMP8s fluorescence changes aligned to bout-initiating presses (f; first press of the session and 
first press after a reward collection) and reward collection (g; first food-port entry after reward delivery) across each training session. (h-
i) Trial-averaged quantification of area under the BLADMS GCaMP8s Z-scored ∆f/F curve (AUC) during the 3-s period prior to initiating 
presses (h; Training: F(2.49, 47.38) = 0.91, P = 0.43; Stress: F(1, 19) = 0.18, P = 0.68; Training x Stress: F(3, 57) = 1.77, P = 0.16) or following 
reward collection (i; Stress: F(1, 19) = 24.13, P < 0.0001; Training: F(2.41, 45.71) = 0.91, P = 0.43; Training x Stress: F(3, 57) = 0.78, P = 0.51) 
across training. Control N = 9 (4 male), Stress N = 12 (5 male). (j-o) Fiber photometry recordings of GCaMP8s in CeADMS neurons 
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during instrumental lever press – food-pellet reward learning. (j) Representative immunofluorescent image of retro-cre expression in DMS 
and cre-dependent GCaMP8s expression and fiber placement in CeA. (k) Press rate across training following CUS (Stress) or daily 
handling control. Training: F(1.51, 30.23) = 65.61, P < 0.0001; Stress: F(1, 20) = 1.106, P = 0.31; Training x Stress: F(3, 60) = 1.05, P = 0.38. (l-
m) Trial-averaged Z-scored Δf/F CeADMS GCaMP8s fluorescence changes aligned to bout-initiating presses (l) and reward collection 
(m) across each training session. (n-o) Trial-averaged quantification of CeADMS GCaMP8s Z-scored ∆f/F AUC during the 3-s period 
prior to initiating presses (n; Training: F(2.36, 47.26) = 0.60, P = 0.58; Stress: F(1, 20) = 0.74, P = 0.40; Training x Stress: F(3, 60) = 0.92, P = 
0.44) or following reward collection (o; Training x Stress: F(3, 60) = 4.51, P = 0.006; Training: F(2.34, 46.75) = 3.23, P = 0.04; Stress: F(1, 20) = 
2.41, P = 0.14). Control N = 11 (6 male), Stress N = 11 (4 male). Males = closed circles/solid lines, Females = open circles/dashed lines. 
*P <0.05, **P <0.01, ***P < 0.001. 
 
Suppression of BLADMS pathway activity disrupts action-outcome learning and enables chronic 
stress to promote habit formation 
We next reasoned that the stress-induced suppression of BLADMS projection activity during action-outcome 

learning might promote premature habit formation. We tested this by asking whether activating BLADMS 

projections during instrumental learning is sufficient to restore goal-directed behavioral control in stressed mice. 

Using an intersectional approach (Figure 3a), we expressed the excitatory designer receptor human M3 

muscarinic receptor (hM3Dq) or fluorophore control in DMS-projecting BLA neurons (Figure 3b-c). Following 14 

consecutive days of CUS or daily handling control, mice received instrumental training to lever press to earn 

food-pellet rewards (Figure 3d). Prior to each training session, mice received the hM3Dq ligand clozapine-N-

oxide (CNO; 0.2 mg/kg101-104 i.p.) to activate BLADMS projections during learning. Neither stress nor 

chemogenetic activation of BLADMS projections altered acquisition of the instrumental lever-press behavior 

(Figure 3e; see also Figure 3-1 for food-port entry data). Whereas controls were sensitive to subsequent outcome 

devaluation, indicating action-outcome learning and goal-directed behavioral control, stressed mice were, again, 

insensitive to devaluation, indicating premature habit formation (Figure 3f-g). Chemogenetic activation of 

BLADMS projections during learning restored normal action-outcome learning enabling goal-directed behavioral 

control, as evidenced by sensitivity to devaluation, in stressed mice (Figure 3f-g; see Figure 3-2 for effects of 

chemogenetic BLADMS activation in handled controls). Thus, activation of BLADMS projections during 

learning is sufficient to overcome the effect of prior chronic stress and restore action-outcome learning for flexible, 

goal-directed behavioral control. 

Given that BLADMS projections are activated by earned rewards during learning, we next reasoned that this 

activity might be critical for the action-outcome learning that supports goal-directed behavioral control. If this is 

true, then inhibiting reward-evoked BLADMS activity should suppress action-outcome learning and 

prematurely promote habit formation in mice without a history of chronic stress. To test this, we used pathway-

specific optogenetic inhibition of BLADMS activity at the time of earned reward during action-outcome learning. 

We expressed the inhibitory opsin archaerhodopsin (Arch) or fluorophore control in the BLA and implanted 

optical fibers in the DMS in the vicinity of Arch-expressing BLA axons and terminals (Figure 3h-j). We used green 

light (532 nm, 10 mW, 5 s) to inhibit BLA terminals in the DMS during collection of each earned reward during 

instrumental lever press - food pellet training (Figure 3k). BLADMS inhibition did not affect acquisition of the 

instrumental behavior (Figure 3l; see also Figure 3-1 for food-port entry data), but did disrupt action-outcome 

learning as evidenced by subsequent insensitivity to outcome devaluation at test (Figure 3m-n). BLADMS 

inhibition was not inherently rewarding or aversive (Figure 3-3). Thus, BLADMS projections are normally 
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activated by rewarding events to enable the action-outcome learning that supports flexible, goal-directed 

behavior. Chronic stress turns off this activity to disrupt action-outcome learning and promote premature habit 

formation. 

 

 
Figure 3: Suppression of BLADMS pathway activity disrupts action-outcome learning and enables chronic stress to promote 
habit formation. (a-g) Chemogenetic activation of BLADMS projections during post-stress instrumental learning. (a) Intersectional 
approach for chemogenetic activation of DMS-projecting BLA neurons. (b) Representative immunofluorescent images of retro-cre 
expression in DMS and cre-dependent hM3Dq expression in BLA. (c) Schematic representation of retro-cre in DMS and cre-dependent 
hM3Dq expression in BLA for all subjects. (d) Procedure schematic. CUS, chronic unpredictable stress. CNO, clozapine-N-oxide. Valued 
state = prefed on untrained food-pellet type to control for general satiety. Devalued state = prefed on trained food-pellet type to induce 
sensory-specific satiety devaluation. (e) Press rate across training following CUS (Stress) or daily handling control. Training: F(1.90, 53.30) = 
60.55, P < 0.0001; Group: F(2, 28) = 1.05, P = 0.36; Training x Group: F(6, 84) = 0.80, P = 0.57. (f) Press rate during the subsequent 
devaluation probe test immediately following sensory-specific satiety devaluation of the trained pellet (Devalued) or an alternate pellet 
type (Valued). Value: F(1, 28) = 18.07, P = 0.0002; Group: F(2, 28) = 2.06, P = 0.15; Group x Value: F(2, 28) = 0.75, P = 0.48. (g) Devaluation 
index [(Devalued condition presses)/(Valued condition presses + Devalued presses)]. Group: F(2,  28) = 3.38, P = 0.048. Control mCherry 
N = 12 (7 male), Stress mCherry N = 9 (5 male), Stress hM3Dq N = 10 (5 male). (h-n) Optogenetic inactivation of BLADMS projections 
at reward during instrumental learning. (h) Approach for optogenetic inhibition of BLA terminals in DMS. (i) Representative 
immunofluorescent images of Arch expression in BLA and optical fiber tip in the vicinity of Arch-expression BLA terminals in the DMS. (j) 
Schematic representation of Arch expression in BLA and approximate location of optical fiber tips in DMS for all subjects. (k) Procedure 
schematic. (l) Press rate across training. Training: F(1.70, 32.34) = 41.26, P < 0.0001; Virus: F(1, 19) = 2.43, P = 0.14; Training x Virus: F(3, 57) 
= 1.14, P = 0.34. (m) Press rate during the subsequent devaluation probe test immediately following sensory-specific satiety devaluation 
of the trained pellet (Devalued) or an alternate pellet type (Valued). Stress x Value: F(1, 19) = 14.35, P = 0.001; Stress: F(1, 19) = 1.43, P = 
0.25; Value: F(1, 19) = 0.43, P = 0.52. (n) Devaluation index. t(19) = 5.03, P < 0.0001. GFP N = 10 (5 male), Arch N = 11 (5 male). Males = 
closed circles/solid lines, Females = open circles/dashed lines. *P <0.05, ***P <0.001. 
 

Chronic stress engages the CeADMS pathway to promote habit formation 

As opposed to the BLADMS pathway, chronic stress engages the CeADMS pathway during learning. We 

reasoned that this, too, may be a mechanism through which stress promotes premature habit formation. If this 

is true, then preventing the stress-induced increase in CeADMS activity during learning should restore action-

outcome learning and goal-directed behavioral control. We tested this in two ways. First, we used an 

intersectional approach (Figure 4a) to express the inhibitory designer receptor human M4 muscarinic receptor 
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(hM4Di), or a fluorophore control in DMS-projecting CeA neurons (Figure 4b-c). Following 14 consecutive days 

of CUS or daily handling control, mice received instrumental training to lever press to earn food-pellet rewards 

(Figure 4d). Prior to each training session, mice received the hM4Di ligand clozapine-N-oxide (CNO; 2.0 

mg/kg105-107 i.p.) to inactivate CeADMS projections during learning. Neither stress nor chemogenetic 

inactivation of CeADMS projections altered acquisition of the instrumental behavior (Figure 4e; see also Figure 

4-1 for food-port entry data). At test, we again found evidence of goal-directed behavioral control, sensitivity to 

devaluation, in control subjects and potentiated habit formation, insensitivity to devaluation, in stressed subjects 

(Figure 4f-g). Chemogenetic inhibition of CeADMS projection activity during learning restored action-outcome 

learning to enable goal-directed behavioral control, sensitivity to devaluation, in stressed mice (Figure 4f-g). 

Chronic stress engages the CeADMS pathway specifically at reward experience during learning. Therefore, 

we next asked whether this stress-induced CeADMS reward response is necessary for premature habit 

formation, by optogenetically inhibiting CeA terminals in the DMS at the time of earned reward during learning 

in stressed mice. We expressed the inhibitory opsin Arch or fluorophore control in the CeA and implanted optical 

fibers in the DMS in the vicinity of Arch-expressing CeA axons and terminals (Figure 4h-j). Following 14 days of 

CUS or daily handling control, mice received instrumental training to lever press to earn food-pellet rewards 

(Figure 4k). We used green light (532 nm, 10 mW, 5 s) to inhibit CeA terminals in the DMS during the collection 

of each earned reward (Figure 4k). Neither stress nor optogenetic inhibition of CeADMS projection activity in 

stressed subjects altered acquisition of the instrumental behavior (Figure 4l; see also Figure 4-1 for food-port 

entry data). Similar to chemogenetic inhibition, optogenetic inhibition of CeADMS activity at reward during 

learning restored action-outcome learning to enable goal-directed behavioral control in stressed mice, as 

evidenced by sensitivity to devaluation (Figure 4m-n). Neither chemogenetic nor optogenetic inhibition of 

CeADMS projections altered learning or subsequent behavioral control strategy in mice without a history of 

chronic stress (Figure 4-2). Thus, chronic stress engages CeADMS projections during subsequent reward 

learning experience to promote premature habit formation. 

We next used pathway-specific optogenetic stimulation to ask whether CeADMS pathway activity at reward 

during learning is sufficient to promote premature habit formation. We used an intersectional approach (Figure 

4a) to express the excitatory opsin Channelrhodopsin 2 (ChR2) or a fluorophore control in DMS-projecting CeA 

neurons and implanted optic fibers above the CeA (Figure 4o-q). We first used blue light (473 nm, 10 mW, 20 

Hz, 25-ms pulse width, 2 s) to stimulate CeADMS neurons during the collection of each earned reward during 

instrumental learning in mice without a history of chronic stress. This neither affected acquisition of the lever-

press behavior, nor the action-outcome learning needed to support flexible, goal-directed behavioral control 

during the devaluation test (Figure 4-3). Thus, activation of the CeADMS pathway during reward learning 

experience is not alone sufficient to disrupt action-outcome learning or promote habit formation. We next asked 

whether activation of CeADMS projections is sufficient to amplify the effects of a less frequent prior chronic 

stress experience on habit formation. We repeated the experiment this time in mice with a history of once daily 

CUS for 14 consecutive days (Figure 4r). Again, neither CeADMS activation nor stress altered acquisition of 
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the instrumental behavior (Figure 4s; see Figure 4-1 for food-port entry data). The less frequent chronic stress 

was itself insufficient to cause premature habit formation, but when coupled with activation of CeADMS 

projections at reward during learning did cause premature habit formation as evidenced by greater insensitivity 

to devaluation in subjects that received stimulation relative to those that did not (Figure 4t-u). Thus, activation of 

CeADMS projections during learning is sufficient to amplify the effects of prior subthreshold chronic stress to 

promote habit formation. CeADMS stimulation was not found to be inherently rewarding or aversive in either 

control or stressed subjects (Figure 4-4). Together, these data indicate that chronic stress recruits the 

CeADMS pathway to subsequent learning to promote the premature formation of inflexible habits. 

 

 
Figure 4: Chronic stress engages the CeADMS pathway to promote habit formation. (a-g) Chemogenetic inhibition of CeADMS 
projections during post-stress instrumental learning. (a) Intersectional approach for chemogenetic inhibition of DMS-projecting CeA 
neurons. (b) Representative immunofluorescent images of retro-cre expression in DMS and cre-dependent hM4Di expression in CeA. 
(c) Schematic representation of retro-cre in DMS and cre-dependent hM4Di expression in CeA for all subjects. (d) Procedure schematic. 
CUS, chronic unpredictable stress. CNO, clozapine-N-oxide. Valued state = prefed on untrained food-pellet type to control for general 
satiety. Devalued state = prefed on trained food-pellet type to induce sensory-specific satiety devaluation. (e) Press rate across training 
following CUS (Stress) or daily handling control. Training: F(1.46, 42.19) = 12.57, P = 0.0002; Group: F(2, 29) = 0.23, P = 0.79; Training x Group: 
F(6, 87) = 0.59, P = 0.74. (f) Press rate during the subsequent devaluation probe test immediately following sensory-specific satiety 
devaluation of the trained pellet (Devalued) or an alternate pellet type (Valued). Group x Value: F(2, 29) = 5.85, P = 0.007; Value: F(1, 29) = 
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12.86, P = 0.001; Group: F(2, 29) = 2.65, P = 0.09. (g) Devaluation index [(Devalued condition presses)/(Valued condition presses + 
Devalued presses)]. Group: F(2, 29) = 3.59, P = 0.04. Control mCherry N = 12 (5 male), Stress mCherry N = 11 (5 male), Stress hM4Di N 
= 9 (4 male). (h-n) Optogenetic inactivation of CeADMS projections at reward during post-stress learning. (h) Approach for optogenetic 
inhibition of CeA terminals in DMS. (i) Representative immunofluorescent images of Arch expression in CeA and optical fiber tip in the 
vicinity of Arch-expressing CeA terminals in the DMS. (j) Schematic representation of Arch expression in BLA and approximate location 
of optical fiber tips in DMS for all subjects. (k) Procedure schematic. (l) Press rate across training following CUS (Stress) or daily handling 
control. Training: F(1.80, 36.14) = 22.71, P < 0.0001; Group: F(2, 20) = 0.93, P = 0.41; Training x Group: F(6, 60) = 1.67, P = 0.34. (m) Press rate 
during the subsequent devaluation probe test immediately following sensory-specific satiety devaluation of the trained pellet (Devalued) 
or an alternate pellet type (Valued). Group x Value: F(2, 20) = 4.25, P = 0.03; Value: F(1, 20) = 13.66, P = 0.001; Group: F(2, 20) = 1.74, P = 
0.20. (n) Devaluation index. Group: F(2, 20) = 7.81, P = 0.003. Control GFP N = 7 (4 male), Stress GFP N = 7 (6 male), Stress Arch N = 9 
(5 male). (o-u) Optogenetic stimulation of CeADMS projections at reward during learning following subthreshold chronic stress. (o) 
Intersectional approach for optogenetic stimulation of DMS-projecting CeA neurons. (p) Representative images of retro-cre expression 
in DMS and immunofluorescent staining of cre-dependent ChR2 expression in CeA. (q) Schematic representation of retro-cre in DMS 
and cre-dependent ChR2 expression in CeA for all subjects. (r) Procedure schematic. (s) Press rate across training following once/daily, 
14 d CUS. Training: F(2.11, 33.69) = 76.17, P < 0.0001; Virus: F(1, 16) = 0.33, P = 0.57; Training x Virus: F(3, 48) = 0.19, P = 0.90. (t) Press rate 
during the subsequent devaluation probe test immediately following sensory-specific satiety devaluation of the trained pellet (Devalued) 
or an alternate pellet type (Valued). Virus x Value: F(1, 16) = 4.56, P = 0.049; Virus: F(1, 16) = 0.09, P = 0.76; Value: F(1, 16) = 0.004, P = 0.95. 
(u) Devaluation index. t(16) = 3.12, P = 0.007. GFP N = 8 (4 male), ChR2 N = 10 (6 male). Males = closed circles/solid lines, Females = 
open circles/dashed lines. ns = not significant. *P <0.05, **P < 0.01, ***P <0.001. 
 
DISCUSSION 

These data reveal a dual pathway neuronal circuit architecture by which a recent history of chronic stress shapes 

learning to disrupt flexible, goal-directed behavioral control in favor of inflexible habits. Both the BLA and CeA 

send direct projections to the DMS. The BLADMS pathway is activated by rewarding events and this mediates 

the action-outcome learning that supports flexible, goal-directed control of reward-seeking behavior. Chronic 

stress attenuates this activity to promote premature habit formation. Conversely, the CeADMS pathway is not 

robustly active during action-outcome learning, but stress recruits this pathway to promote premature habit 

formation. Thus, chronic stress promotes habit formation by altering the balance of BLA and CeA input to the 

DMS. 

That the BLADMS pathway mediates action-outcome learning is consistent with evidence that BLA lesion 

disrupts goal-directed behavior77-79 and BLA/DMS disconnection disrupts action-outcome learning82. Here we 

implicate direct BLADMS projections and show that this pathway is activated by rewarding events so one can 

link those rewards to the actions that earned them and, subsequently, use those action-outcome memories to 

engage in the prospective consideration of action consequences needed for flexible decision making. These data 

are, however, inconsistent with evidence that BLADMS ablation does not disrupt action-outcome learning108. 

Thus, temporally-specific manipulation was needed to reveal the function of this pathway in action-outcome 

learning. Chronic stress suppresses learning-related activity in BLADMS projections. This was surprising 

because the BLA is, generally, hyperactive following chronic stress109-116 (c.f.117), but it indicates that chronic stress 

suppresses activity in the BLA pathway that is critical for the learning that supports flexible, goal-directed decision 

making. Given that the BLADMS projection is predominately excitatory118-120, the BLA is poised to excite the 

DMS neuronal activity that mediates action-outcome learning70-72,121-125. Stress removes this influence to disrupt 

action-outcome learning and promote habit formation. 

Like the BLA, we found that the CeA also targets the DMS. Unlike the BLADMS pathway, we find that the 

CeADMS pathway is not typically activated during action-outcome learning but is recruited by chronic stress 

to promote premature habit formation. This is consistent with evidence that the CeA is itself required for natural 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.03.560731doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.03.560731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

habit formation79. It is also consistent with evidence that stress increases CeA activity126-131. Here we show that 

a recent history of chronic stress causes CeADMS projections to be activated by rewards during instrumental 

learning. This alters learning, disrupting the ability to engage in subsequent prospective consideration of action 

consequences in favor of inflexible, habitual behavioral control. Indeed, given that most CeA neurons are 

inhibitory88,132, the recruitment of this pathway is poised to attenuate the DMS activity needed for action-outcome 

learning70-72,121-123. Previous work has shown that the CeA works indirectly, likely via the midbrain133-136, with the 

dorsolateral striatum to regulate habit formation79,137. Thus, the CeA may promote habit learning through both direct 

and indirect pathways to the striatum. Whether stress acts via multiple CeA outputs to promote habit is a ripe 

question for future investigation. Interestingly, activation of the CeADMS pathway alone was not sufficient to 

recapitulate the effects of stress to promote habit formation. Rather CeADMS activation was sufficient to tip the 

balance towards habit following a subthreshold mild chronic stress experience. Thus, stress exposure may prime 

the CeADMS pathway to be recruited during subsequent learning. Additionally, CeADMS activation may work 

along with a confluence of disruptions, likely to the BLADMS pathway, but also to cortical inputs to DMS60,123,138 

and perhaps CeA outputs to midbrain133,134, to promote habit formation. 

These data support a parallel model139 of amygdala function whereby, via distinct outputs to the DMS, the amygdala 

actively gates the nature of learning to regulate the balance of behavioral control strategies. Unlike valence-

processing models of amygdala function140,141, the data here indicate that BLA and CeA projections to DMS are 

unlikely to convey simple positive or negative valence, but rather differentially shape the content of learning. 

Chronic stress flips the balance of BLA and CeA inputs to the DMS to promote the formation of rigid, inflexible 

habits.  

The discoveries here open the door to many important future questions. One is how prior chronic stress affects 

learning-associated BLADMS and CeADMS activity. That chronic stress occurred before training and did 

not alter spontaneous activity in either pathway, suggests that it may lay down neuroplastic changes in these 

pathways that become influential during subsequent learning opportunities. How such changes occur is a big 

and important question for future research. An equally substantial next question is how these pathways influence 

downstream DMS activity to promote habit formation. Indeed, DMS neuronal activity, especially plasticity in 

dopamine D1 receptor-expressing neurons121, is critical for the action-outcome learning that supports goal-

directed behavior70-72,123 and when suppressed promotes inflexible habits70,76. A reasonable speculation is that the 

excitatory BLADMS pathway promotes downstream learning-related activity in DMS to support action-outcome 

learning and that the inhibitory CeADMS pathway dampens such activity to encourage habit formation. 

Amygdala-striatal inputs may coordinate in this regard with corticostriatal inputs, known to be important for 

supporting action-outcome learning22,60,142. The BLADMS and CeADMS pathways mediate the influence of 

stress on the learning that supports behavioral control strategies. Manipulations restricted to learning were 

sufficient to rescue normal goal-directed behavioral control following chronic stress. Whether these pathways 

similarly contribute to the expression of behavioral control strategies is also a ripe question for future 

investigation. Both amygdala subregions and DMS participate in drug-seeking137,143-148 and active avoidance 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.03.560731doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.03.560731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

behavior149. The central amygdala is particularly implicated in compulsive drug seeking and drug seeking after 

extended use, dependence and withdrawal, or stress137,147,150,151. Thus, more broadly, our results indicate chronic 

stress is poised to oppositely modulate BLADMS and CeADMS pathways to promote maladaptive drug-

seeking and/or avoidance habits. 

Adaptive decision making often requires understanding your agency in a situation. Knowing that your actions 

can produce desirable or undesirable consequences and using this to make thoughtful, deliberate, goal-directed 

decisions. Chronic stress can disrupt such agency and promote inflexible, habitual control over behavior. We 

found that stress does this with a one-two punch to the brain. Chronic stress dials down the BLADMS pathway 

activity needed to learn the association between an action and its consequence to enable flexible, well-informed 

decisions. It also dials up activity in the CeADMS pathway, causing the formation of rigid, inflexible habits. 
These data provide neuronal circuit insights into how chronic stress shapes how we learn and, thus, how we 

decide. This helps understand how stress can lead to the disrupted decision making and pathological habits that 

characterize substance use disorders and mental illness. 
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METHODS 
See Supplemental Table 5 for key reagents. 
 
Subjects 
Male and female wildtype C57/Bl6J mice (Jackson Laboratories, Bar Harbor, ME) aged 9-12 weeks old at the 
time of surgery served as subjects. Rabies tracing was conducted with Drd1a-Cre and Adora2A-Cre transgenic 
mice bred in house and aged 8-16 weeks at the time of surgery. Mice were housed in a temperature (68-79 °F) 
and humidity (30-70%) regulated vivarium on 12:12 hour reverse dark/light cycle (lights off at 7 AM). Behavioral 
experiments were performed during the dark phase. Mice were group housed in same-sex groups of 3-4 
mice/cage prior to onset of behavioral experiments and subsequently single-housed for the remainder of the 
experiment to facilitate food deprivation and preserve implants. Unless noted below, mice were provided with 
food (standard rodent chow, Lab Diet, St. Louis, MO) and water ad libitum in the home cage. Mice were handled 
for 3-5 days prior to the start of behavioral training for each experiment. All procedures were conducted in 
accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the UCLA 
Institutional Animal Care and Use Committee. 
 
Surgery 
Mice were anesthetized with isoflurane (3% induction, 1% maintenance), and positioned in a digital stereotaxic 
frame (Kopf, Tujunga, CA). Subcutaneous Rimadyl (Carprofen; 5 mg/kg; Zoetis, Parsippany, NJ) was given pre-
operatively for analgesia and anti-inflammatory purposes. Small cranial holes (1–2 mm2) were drilled, through 
which virus or fluorescent tracers were delivered via a guide cannula (DMS: 28 ga, BLA/CeA:  33 ga), 
PlasticsOne, Roanoke, VA) connected to a 1-mL syringe (Hamilton Company, Reno, NV) by intramedic 
polyethylene tubing (BD; Franklin Lakes, NJ) and controlled by a syringe pump (Harvard Apparatus, Holliston, 
MA). Coordinates (from Bregma) were determined by mouse brain reference atlas152 and were as follows: CeA, 
AP -1.2, ML ±2.8, DV -4.6 mm; BLA, AP -1.5, ML ±3.2, DV -5.0 mm; DMS, AP +0.2, ML ±1.8, DV -2.65 mm. 
Virus or tracers were infused at a rate of 0.1 µL/min and cannulae were left in place for at least 10 min post-
injection. For injection-only surgeries, the skin was re-closed with Vetbond tissue adhesive (3M, Saint Paul, MN). 
For surgeries requiring fiber-optic cannulae, fibers were placed 0.3 mm above the target region for optogenetic 
experiments and at the infusion site for fiber photometry experiments, secured to the skull using RelyX Unicem 
Universal Self-Adhesive Resin (3M) and a head cap was created using C&B Metabond quick adhesive cement 
system (Parkell Inc., Brentwood, NY), followed by opaque dental cement (Lang Dental Manufacturing, Wheeling, 
IL). After surgery, mice were kept on a heating pad maintained at 35 °C for 1 hour and then single-housed in a 
new homecage for recovery and monitoring. Mice received chow containing the antibiotic TMS for 7 days 
following surgery to prevent infection, after which they were returned to standard rodent chow. Specific surgical 
details for each experiment are described below. In all cases, surgery occurred prior to the onset of stress and/or 
behavioral training. 
 
Chronic mild unpredictable stress 
The chronic mild unpredictable stress (CUS) procedure was modified from60,153-156. Mice assigned to the CUS 
group were exposed to 2 stressors/day (foot shock, physical restraint, tilted cage, white noise, continuous 
illumination, or damp bedding) for 14 days in a pseudorandomized manner at variable time onset and for varying 
durations between 2 and 16 hours. Control subjects received equated daily handling in the vivarium by the same 
experimenter administering the CUS. CUS was administered in a separate, enclosed laboratory space distinct 
from both the vivarium and behavioral testing rooms. CUS mice had home-cage nesting material removed for 
the duration of the CUS exposure157. Mice were transported to the stress space in individual 16-oz clear 
polyethylene containers and on a dedicated transport cart and placed into individual cages in the stress space. 
Stress efficacy was assessed by daily body weight measurements158. Sub-threshold CUS exposure was identical 
to CUS except mice received only 1 stressor/day. 
 
Stressors 
Footshock: Subjects were placed in the conditioning chamber for 2 min to acclimate and then exposed to 5, 2-3 
s, 0.7-mA footshocks with a variable intertrial interval averaging 60 sec (30-90 sec range). The footshock 
chamber had a similar grid floor to the behavioral testing chambers (described below) but was otherwise distinct 
in wall shape (round), pattern (monochrome polka dot), lack of bedding, scent (75% ethanol), and lighting (off). 
The chambers also lacked food ports and levers. Chambers were cleaned with 75% ethanol between subjects. 
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Physical Restraint: Subjects were immobilized in modified 50-mL polypropylene conical tubes with 4 air holes 
per side, 1 at the top, and 1 in the cap for the tail (10 total). Mice were scruffed and placed inside the conical 
tube for 2 hours in their stress cage. 
Tilted cage: Stress cages were placed on chocks to tilt each cage at approximately a 45-degree angle for 6 - 16 
hours. 
White noise: 100-db white noise was played in the stress space for all CUS mice for a duration of 6 - 16 hours. 
Continuous illumination: Overhead lights were turned on during the dark phase of the light cycle (7PM – 7AM). 
Damp bedding: ~200 mL of water was mixed with the stress cage corncob bedding. Mice were placed in their 
stress cage with this damp bedding for 6 - 16 hours. Mice were returned to a new home cage with clean, dry 
bedding afterwards. 
 
Corticosterone ELISA 
N = 11 male and N = 12 female mice were used for corticosterone measurements of blood serum after exposure 
to 0, 1, or 2 stressors per day for 14 day. Measurements were taken 24 hours after the final stress exposure. 
Mice were decapitated and trunk blood was collected in 1.7-mL sample tubes on ice. Tubes were centrifuged at 
2000 g for 10 min at 4 °C. Clear supernatant was collected and placed in new 1.7-mL sample tubes and frozen 
at -20 °C. Samples were diluted 1:40 in sample dilution buffer. Serum corticosterone levels were assessed using 
a Corticosterone ELISA kit as directed (Enzo Biosciences; Farmingdale, NY) and quantified on a microplate 
reader (Molecular Devices, San Jose, CA). 
 
Behavioral procedures 
Instrumental conditioning and tests 
Instrumental conditioning procedures were adapted from our prior work97. 
Apparatus. Training took place in Med Associates wide mouse conditioning chambers (East Fairfield, VT) housed 
within sound- and light-attenuating boxes. Each chamber had metal grid floors and contained a retractable lever 
to the left of a recessed food-delivery port (magazine) on the front wall. A photobeam entry detector was 
positioned at the entry to the food port. Each chamber was equipped with 2 pellet dispensers to deliver either 
20-mg grain or chocolate-flavored purified pellets (Bio-Serv, Frenchtown, NJ) into the food port. A fan mounted 
to the outer chamber provided ventilation and external noise reduction. A 3-watt, 24-volt house light mounted on 
the top of the back wall opposite the food port provided illumination. To monitor subject behavior, monochrome 
digital cameras (Med Associates) were positioned over top of the conditioning chambers. For optogenetic 
manipulations, chambers were outfitted with an Intensity Division Fiberoptic Rotary Joint (Doric Lenses, Quebec, 
QC, Canada) connecting the output fiber optic patch cords to a 473-nm or 593-nm laser (Dragon Lasers, 
ChangChun, JiLin, China) positioned outside of the chamber. 
Food deprivation. 3 - 5 days prior to the start of behavioral training, mice were food-deprived to maintain 85%-
90% of their free-feeding body weight. Mice were given 1.5 - 3.0 g of their home chow at the same time daily at 
least 2 hours after training sessions. For experiments involving CUS, food deprivation began during the last 3 
days of the stress procedure. Owing to food deprivation, body weights did not differ between groups at the start 
or end of training (see Supplemental Table 1). 
Outcome pre-exposure. To familiarize subjects with the food pellet that would become the instrumental outcome, 
mice were given 1 session of outcome pre-exposure. Mice were placed in a clean, empty cage and allowed to 
consume 20 - 30 of the food pellets from a metal cup. If any pellets remained, they were placed in the home 
cage overnight for consumption. 
Magazine conditioning. Mice received 1 session of training in the operant chamber to learn where to receive the 
food pellets (20-mg grain or chocolate-purified pellets). Mice received 20 - 30 non-contingent pellet deliveries 
from the food port with a fixed 60-s intertrial interval. 
Instrumental conditioning. Mice received 4 sessions (1 session/day consecutively), minimum, of instrumental 
conditioning in which lever presses earned delivery of a single food pellet. Earned pellet type (grain or chocolate) 
was counterbalanced across subjects within each group of each experiment. Each session began with the 
illumination of the house light and extension of the lever, and ended with the retraction of the lever and turning 
off of the house light. Sessions ended after the total available outcomes (20 or 30, as noted for each experiment 
below) had been earned or a maximum time limit (20 or 30 min, as noted below) had been reached. In all cases, 
training began on a fixed-ratio 1 schedule (FR-1), in which each action was reinforced with one food pellet 
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outcome. Once mice completed 2 sessions in which they achieved 80% performance criteria (earned 80% of the 
max outcomes), the reinforcement schedule was escalated to either random interval (RI) or random ratio (RR) 
as described for each experiment below. For the RI protocol, mice received 1 session on an RI-15 s schedule 
then 2 - 3 sessions on the final RI-30 s schedule (variable average 15-s or 30-s interval must elapse following a 
reinforcer for another press to be reinforced). Subjects on the RR protocol received 1 session each of RR-2, RR-
5, and RR-10 schedule of reinforcement (variable press requirement average of 2, 5, or 10 presses to earn the 
food pellet).  
Alternate outcome exposures. To equate exposure of the non-trained pellet, all mice were given non-contingent 
access to same number of the alternate food pellets (e.g., chocolate pellets if grain pellets served as the training 
outcome) as the earned pellet type in a different context (clear plexiglass cage) a minimum of 2 hours before or 
after (alternated daily) each RI or RR instrumental training session. 
Sensory-specific satiety outcome devaluation test. Testing began 24 hr after the final instrumental conditioning 
session. Mice were given 1 - 1.5 hours access to either 4 g of the food pellets previously earned by lever pressing 
(Devalued condition) or 4 g of the non-trained pellets to control for general satiety (Valued condition). The 
remaining pellets were weighed following prefeeding to measure total consumption. Consumption did not 
significantly differ between the Devalued v. Valued conditions for any experiment (Supplemental Table 2). 
Immediately after this prefeeding, lever pressing was assessed during a brief, 5-min, non-reinforced probe test. 
Following the probe test, mice were given a 10-min consumption choice test with simultaneous access to 1 g of 
both pellet types to ensure rejection of the devalued outcome. In all cases, mice consumed less of the prefed 
pellet than non-prefed pellet, indicating successful sensory-specific satiety devaluation (Supplemental Table 3). 
24 hr after the first devaluation test, mice received 1 session of instrumental retraining on the final reinforcement 
schedule (RI30 or RR10), followed the next day by a second devaluation test in which they were prefed the 
opposite food pellet. Thus, each mouse was tested in both the Valued and Devalued conditions, with test order 
counterbalanced across subjects within each group for each experiment. 
Real-time place preference/avoidance test 
Procedure was conducted as described previously159. Mice were habituated to a 2-sided opaque plexiglass 
chamber (20 × 42 × 27 cm) for 10 min, during which their baseline preference for the left or right side of the 
chamber was measured. During the first 10-min test session, one side of the chamber was assigned to the light-
delivery side (counterbalanced across subjects within each group). Mice were placed in the non-stimulation side 
to start the experiment. Light (Dragon Laser; Changchun, China) was delivered upon entry into the light-paired 
side and continued until the subject exited that side (optical stimulation: 473 nm, 5-ms pulse width, 20 Hz, ~8-
10 mW at fiber tip; optical inhibition: 593 nm, continuous, ~8-10 mW). Mice then received a second test, identical 
to the first, in which the opposite side of the chamber served as the light-paired side. Sessions were video-
recorded using a CCD camera. This camera interfaced with Biobserve software (Biobserve GmbH, Germany) 
and a Pulse Pal (Sanworks, Rochester, NY), to track subject position in real time and trigger laser delivery. The 
apparatus was cleaned with 75% ethanol after each session. Distance traveled, movement velocity, and time 
spent in each chamber was generated by Biobserve software post-session. Time spent in laser-paired chamber 
was compared between groups to assess preference or aversion of laser delivery. 
Open-field test 
Procedure was conducted as described previously159. Mice were placed in an opaque plexiglass arena (34 × 34 
× 34 cm) for a single 10-min session. Sessions were video recorded using a CCD camera interfaced with 
Anymaze (Stoelting Co., Wood Dale, IL) software, which was used to track subject position in real time. Center 
region was defined as the innermost third of the floor area. Brightness above the OFT was ~70 lux. The apparatus 
was cleaned with 75% ethanol after each subject. Distance traveled, movement velocity, and time spent in either 
center or surrounding outer area was generated by Biobserve software and compared between groups. 
Elevated plus maze 
Procedure was conducted as described previously160. The dimensions of the elevated plus maze (EPM) arms 
were 30 cm x 7 cm, and the height of the closed arm walls was 20 cm. The maze was 65 cm elevated from the 
floor and was placed in the center of the behavior room away from other stimuli. Brightness above the EPM was 
~70 lux. For the 10-min EPM test, mice were placed in the center of EPM facing a closed arm. Each session 
was video recorded using a CCD camera, which interfaced with Anymaze software to track subject location in 
real time. The apparatus was cleaned with 75% ethanol after each session. Distance traveled, movement 
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velocity, and time spent in the center, open arms, or closed arms was generated by Biobserve software and 
compared between groups. 
Light/dark emergence test 
The dark side of a 2-chamber apparatus was made of black opaque plexiglass and completely enclosed except 
for a small entry through the middle divider. The light side was made of white opaque plexiglass and was open 
to the light above. Brightness in the light chamber was ~70 lux. Mice were placed in the open portion of the 
apparatus to initiate a 10-min session. Each session was video recorded using a CCD camera, which interfaced 
with Anymaze software to track subject location. The apparatus was cleaned with 75% ethanol after each 
session. Distance traveled, movement velocity, and time spent in the light chamber was generated by Biobserve 
software and compared between groups. 
Sucrose-preference test 
Mice first received habituation to 2 standard home-cage water bottles filled with water in the home cage for 16 
hours. Subsequently, one water bottle was replaced with a bottle of 10% sucrose. Bottles were left in place for 
24 hours and weighed before and after placement. Bottle positions were switched for another 24-hour period 
and subsequently weighed again. Amount of sucrose and water consumed, as well as a ratio of the two, during 
the 48-hour period was compared between groups. 
Progressive ratio test 
Mice were trained on the instrumental training protocol above to a reinforcement schedule of RR-10. They were 
then given a progressive ratio test in which the number of lever presses required to receive a pellet increased 
by 4 with each reinforcer delivered (e.g., 1, 5, 9, 13, 17, 21 etc.). The session ended after >5-min break in 
pressing or maximum duration of 4 hr. Session duration, rewards delivered, total presses, and the break point 
(last completed press requirement) were collected and compared between groups.  
 
Tracing 
Anterograde tracing of CeA neurons was performed as previously described161. Male (N = 2) and female (N = 2) 
naïve mice were infused bilaterally with the anterograde tracer AAV8-Syn-mCherry (Addgene, Watertown, MA) 
in the CeA (0.2 µL). Virus was allowed to express for 4 weeks, following which mice were perfused and histology 
was processed as described below to identify fluorescently labeled fibers in the dorsal striatum. 
For retrograde tracing of DMS-projecting amygdala neurons, male (N = 2) and female (N = 2) naïve mice were 
infused with Fluorogold (Sigma, St. Louis, MO; 4% in sterile saline) in the DMS (0.2 µL). Virus was allowed to 
express for 5 days, following which mice were perfused and histology was processed as described below to 
identify fluorescently labeled cell bodies in CeA and BLA. 
For retrograde tracing of monosynaptic inputs onto Drd1a+ or A2A+ DMS neurons, male (N = 4) and female (N = 
4) Drd1a-cre or male (N = 3) and female (N = 2) Adora2A-cre naïve mice were infused with 0.3 µL AAV2-hSyn-
FLEX-TVA-P2A-eGFP-2A-oG (Salk Gene Transfer, Targeting and Therapeutics Facility) in the DMS. Three 
weeks later, mice were infused with 0.3 µL EnvA G-deleted Rabies-mCherry at the same DMS coordinates. Mice 
were perfused 1 week later and tissue was processed as described below to identify monosynaptically-labeled 
inputs in CeA and BLA. 4 Drd1a-cre and 1 Adora2A-cre subjects were removed due to starter virus spillover in 
the BNST. 
 
Fiber photometry calcium imaging of CeADMS or BLADMS projections during instrumental learning 
following CUS 
Male and female (CeADMS: N = 38, 14 male; BLADMS: N = 34, 13 male) naïve mice were used in this 
experiment to monitor calcium fluctuations in CeADMS and BLADMS projections during instrumental 
conditioning after CUS. 18 subjects with off-target viral expression and/or fiber location were excluded from the 
dataset. 4 subjects were excluded for loss of optic fibers/headcaps. 4 subjects were excluded for missing 
recording data from one session. 3 subjects that did not complete instrumental conditioning were also excluded. 
Mice were randomly assigned to Virus and Stress groups. At surgery, mice received unilateral infusion (left/right 
hemisphere counterbalanced across subjects within each group) of a retrogradely trafficked AAV encoding cre-
recombinase (AAVrg-Syn-Cre-P2A-dTomato, Addgene) into the DMS (0.3 µl) and of an AAV encoding the cre-
dependent genetically encoded calcium indicator GCaMP8s (AAV9-Syn-FLEX-GcAMP8s-GFP, Addgene) into 
either the CeA or BLA (0.1-0.2 µl). Optic fiber cannulae (5.0-mm length (BLA) or 4.6 mm (CeA), 200-µm diameter, 
0.37 NA, Inper, Hangzhou, China) were implanted over the GCaMP infusion site for calcium imaging at cell 
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bodies. Mice were given 1 - 2 weeks to recover post-surgery, followed by 14 consecutive days of twice/daily 
CUS or daily handling as described above. Mice were habituated to restraint during the final 3 days of the 
CUS/handling period. 24 hours after the final CUS exposure, mice began instrumental conditioning as described 
above. Each session began with a 3-minute baseline period prior to the start of the instrumental session for 
assessment of changes in baseline calcium activity. After completion of FR-1, mice received 1 session each of 
training on an RR-2, RR-5, and RR-10 reinforcement schedule (max 20 outcomes/20 min/session). We chose 
an RR reinforcement schedule for this experiment because it tends to promote action-outcome learning and 
goal-directed behavioral control94,95,100,123 and would, thus, make it more difficult for prior CUS to induce habits, 
increasing the robustness of the results. 

Fiber photometry was used to image bulk calcium activity in CeADMS or BLADMS neurons for 3-min 
prior to and throughout each instrumental conditioning session using a commercial fiber photometry system 
(Neurophotometrics Ltd., San Diego, CA). Two light-emitting LEDs (470 nm: Ca2+-dependent GCaMP 
fluorescence; 415 nm: autofluorescence, motion artifact, Ca2+-independent GCaMP fluorescence) were reflected 
off dichroic mirrors and coupled via a patch cord (200 µm; 0.37 NA, Inper) to the implanted optical fiber. The 
intensity of excitation light was adjusted to ∼100 µW at the tip of the patch cord. Fluorescence emission was 
passed through a 535-nm bandpass filter and focused onto the complementary metal-oxide semiconductor 
(CMOS) camera sensor through a tube lens. Samples were collected at 20 Hz interleaved between the 415 nm 
and 470 nm excitation channels using a custom Bonsai workflow. Time stamps of task events were collected 
simultaneously through an additional synchronized camera aimed at the Med Associates interface, which sent 
light pulses coincident with task events (onset, press, entry, reward). Signals were saved using Bonsai software 
and exported to MATLAB (MathWorks, Natick, MA) for analysis. 

To assess the response to appetitive and aversive stimuli and provide a positive signal control, fiber 
photometry measurements were made during subsequent non-contingent reward and footshock sessions. In the 
first session, mice received 10 non-contingent food-pellet deliveries with a variable 60-s intertrial interval. 24 
hours later, they received a session of 5, 2-s, 0.7mA footshocks with a variable 60-s intertrial interval. Calcium 
signal was aligned to reward collection or shock onset using timestamps collected as above. Mice were then 
perfused and brain tissue was processed with standard histology procedures described below to assess viral 
expression location/spread and fiber location. 
Fiber photometry analysis 
Data were pre-processed using a custom-written pipeline in MATLAB (MathWorks, Natick, MA) as previously162. 
The 415 nm and 470 nm signals were fit using an exponential curve. Change in fluorescence (ΔF/F) at each 
time point was calculated by subtracting the fitted 415 nm signal from the 470 nm signal and normalizing to the 
fitted 415 nm data [(470-fitted 415)/fitted 415)]. The ΔF/F data was Z-scored to the average of the whole session 
[(ΔF/F - mean ΔF/F)/std(ΔF/F)]. Z-scored traces were then aligned to behavioral event timestamps throughout 
each session. Area under the curve (AUC) was calculated for each individual aligned trace within each session 
using a trapezoidal function. We use the 3-s period prior to initiating presses to quantify activity related to the 
initiation of actions. We used the 3-s period following reward collection to quantify activity related to the earned 
outcome and unpredicted reward. We used the 1-s period following shock onset to quantify acute shock 
responses and the 2-s post-shock period to quantify activity following the shock. Quantifications and signal 
aligned to events were averaged across trials within a session and compared across sessions and between 
groups. Spontaneous activity was recorded during a 3-minute baseline period in the instrumental training context 
prior to each training session. Calcium events were identified as described previously163. First, we fitted the 
isosbestic channel to the 470 nm signal using an exponential function then subtracted the isosbestic trace from 
the calcium trace to remove calcium-independent artifacts. We defined a series of sliding-moving windows (15-
s window, 1-second step) along the trace in which we filtered out high-amplitude events (greater than 2x the 
median of the 15-s window) and calculated the median absolute deviation of the resultant trace. Calcium 
transients with local maxima greater than 2 times above the median absolute deviation were selected as events. 
These events were used to calculate spontaneous event frequency and amplitude for BLADMS and 
CeADMS pathways. 
 
Chemogenetic activation of BLADMS projections during instrumental learning following CUS 
Male and female (mCherry N = 28, 14 male; hM3Dq: N = 26, 16 male) naïve mice were used in this experiment 
to assess whether activation of BLADMS projections during learning is sufficient to rescue action-outcome 
learning for goal-directed behavioral control in subjects with a history of CUS. 15 subjects with off-target viral 
expression and 2 subjects that did not complete instrumental conditioning were excluded from the dataset. Mice 
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were randomly assigned to Viral and Stress groups. At surgery, all mice received bilateral infusion of the 
retrogradely-trafficked canine-adenovirus encoding cre-recombinase (CAV2-Cre-GFP; Plateforme de 
Vectorologie de Montpellier, Montpellier, France) into the DMS (0.3 µl) and AAV encoding the cre-inducible 
excitatory designer receptor human M3 muscarinic receptor (hM3Dq; AAV2-Syn-DIO-hM3Dq-mCherry; 
Addgene, Watertown, MA) or fluorophore control (AAV2-Syn-DIO-mCherry; Addgene) into the BLA (0.1-0.2 µl). 
Mice were given 1-2 weeks to recover post-surgery, followed by 14 consecutive days of twice/daily CUS or daily 
handling, as described above. Mice were habituated to i.p. injections during the final 3 days of the CUS/handling 
period. 24 hours after the final CUS exposure, mice began instrumental conditioning, as described above. All 
subjects received an intraperitoneal (i.p.) injection of clozapine-n-oxide (water soluble CNO; 0.2 mg/kg101-104,164; 
Hello Bio, Princeton, NJ) 30 min prior to each instrumental conditioning session. Upon completion of FR-1 (80% 
max rewards delivered), mice received 1 training session the RI-15s reinforcement schedule following by 2 
sessions on an RI-30s schedule (max 30 outcomes/30 min/session). We chose an RI schedule of reinforcement 
for this experiment because it tends to promote habit formation 94,95,100,123 and, thus, would make it more difficult 
to neurobiologically prevent stress-potentiated habit, increasing the robustness of the results. Following training 
mice received a counterbalanced pair of sensory-specific satiety outcome-specific devaluation tests, as above. 
No CNO was given on test days. CNO was given prior to the retraining session (RI-30s) in between tests. After 
instrumental training and testing, mice were perfused and brain tissue was processed using standard histology 
procedures described below to assess viral expression location and spread. 
 
Optogenetic inhibition of BLADMS projections during instrumental learning 
Male and female (eYFP N = 20, 10 male; Arch: N = 20, 10 male) naïve mice were used in this experiment to 
assess the necessity of BLADMS projection activity at outcome experience during training for the action-
outcome learning that supports goal-directed behavioral control. 13 subjects with off-target viral expression or 
fiber location and 6 subjects that did not complete instrumental conditioning were excluded from the dataset. 
Mice were randomly assigned to Viral group. At surgery, mice received bilateral infusion of an AAV encoding the 
inhibitory opsin archaerhodopsin (AAVDJ-Syn-eArch-eYFP, Stanford Vector Core) or fluorophore control (AAV8-
Syn-GFP; Addgene) into the BLA (0.1 - 0.2 µl). Optic fiber cannulae (2.4-mm length, 100-µm diameter, 0.22 NA, 
Inper) were implanted over the DMS. Mice were given 3 weeks to recover and allow for viral expression. Mice 
were habituated to restraint for attaching optical fibers for 3 days immediately prior to instrumental conditioning. 
During instrumental conditioning, mice were tethered to a 100-µm diameter optic fiber bifurcated patchcord 
(Inper) attached to a 593-nm laser (Dragon Laser) via a rotary joint. Mice were habituated to the tether during 
the magazine training session, but no laser was delivered. Beginning with the first FR-1 session, all subjects 
received laser delivery during reward collection (first magazine entry after reward delivery; 5-s pulse, 8-10 mW). 
After completion of FR-1, mice received 1 session each of instrumental conditioning on an RR-2, RR-5, and RR-
10 reinforcement schedule (max 20 outcomes/20 min/session). We chose an RR schedule of reinforcement for 
this experiment because tends to promote action-outcome learning and goal-directed behavioral control 
94,95,100,123 and, thus, would make it more difficult to neurobiologically induce habit formation, increasing the 
robustness of the results. Following training mice received a counterbalanced set of sensory-specific satiety 
outcome-specific devaluation tests, as above. Mice were tethered but no laser was delivered on test days. Mice 
received laser as in training during the intervening retraining session. After instrumental training and testing, 
mice were tested in the RTPP test as described above. Mice were then perfused and brain tissue was processed 
with standard histology procedures described below to assess viral expression location/spread and fiber 
placement. 
 
Chemogenetic inactivation of CeADMS projections during instrumental learning following CUS 
Male and female (mCherry N = 32, 16 male; hM4Di: N = 32, 16 male) naïve mice were used in this experiment 
to assess the necessity of CeADMS projection activity during learning for stress-potentiated habit formation. 
16 subjects with off-target viral expression and 3 subjects that did not complete instrumental conditioning were 
excluded from the dataset. Mice were randomly assigned to Viral and Stress groups. At surgery, all mice received 
bilateral infusion of the retrogradely-trafficked CAV encoding cre-recombinase (CAV2-Cre-GFP; Plateforme de 
Vectorologie de Montpellier) into the DMS (0.3 µl) and AAV encoding the cre-inducible inhibitory designer 
receptor human M4 muscarinic receptor (hM4DGi; AAV2-Syn-DIO-hM4Di-mCherry; Addgene) or fluorophore 
control (AAV2-Syn-DIO-mCherry; Addgene) into the CeA (0.1-0.2 µl). Mice were given 1-2 weeks to recover 
post-surgery, followed by 14 consecutive days of twice/daily CUS or daily handling as described above. Mice 
were habituated to i.p. injections during the final 3 days of the CUS/handling period. 24 hours after the final CUS 
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exposure, mice began instrumental conditioning as described above. All subjects received an intraperitoneal 
(i.p.) injection of CNO (2 mg/kg106,107,164,165; Hello Bio) 30 min prior to each instrumental conditioning session. 
Upon completion of FR-1, mice received 1 session of training on an RI-15s reinforcement schedule followed by 
2 sessions on the RI-30s schedule (max 30 outcomes/30 min/session). We chose an RI reinforcement schedule 
for this experiment because it tends to promote habit formation 94,95,100,123 and, thus, would make it more difficult 
to neurobiologically prevent stress-potentiated habit, increasing the robustness of the results. Following training, 
mice received a counterbalanced pair of sensory-specific satiety outcome-specific devaluation tests, as above. 
No CNO was given on test days. CNO was given prior to the retraining session. After instrumental training and 
testing, mice were then perfused and brain tissue was processed with standard histology procedures described 
below to assess viral expression location and spread. 
 
Optogenetic inactivation of CeADMS projections during instrumental learning following CUS 
Male and female (control, GFP N = 18, 11 male; control, Arch: N = 26, 12 male) naïve mice were used in this 
experiment to assess the necessity of CeADMS projection activity at outcome experience during learning for 
stress-potentiated habit formation. 10 subjects with off-target viral expression or fiber location and 2 subjects 
that did not complete instrumental conditioning were excluded from the dataset. Mice were randomly assigned 
to Virus and Stress groups. At surgery, mice received bilateral infusion an AAV encoding the inhibitory opsin 
Arch (AAVDJ-Syn-eArch-eYFP, Stanford Vector Core) or fluorophore control (AAV8-Syn-GFP; Addgene) into 
the CeA (0.1-0.2 µl). Optic fiber cannulae (2.4-mm length, 100-µm diameter, 0.22 NA, Inper) were implanted 
over the DMS. Mice were given 1 - 2 weeks to recover post-surgery, followed by 14 consecutive days of 
twice/daily CUS or daily handling as described above. Mice were habituated to restraint for attaching optical 
fibers during the final 3 days of the CUS/handling period. 24 hours after the final CUS exposure, mice began 
instrumental conditioning as described above. During instrumental conditioning, mice were tethered to a 100-µm 
diameter optic fiber bifurcated patchcord (Inper) attached to a 593-nm laser (Dragon Laser) via a rotary joint. 
Mice were habituated to the tether during the magazine training session, but no laser was delivered. Beginning 
with the first FR-1 session, all subjects received laser delivery during reward collection, (first magazine entry 
after reward delivery; 5-s pulse, 8-10 mW). After completion of FR-1, mice received 1 training session on an RI-
15s reinforcement schedule and 2 training sessions on the RI-30s schedule (max 20 outcomes/20 min/session). 
We chose an RI reinforcement schedule for this experiment because it tends to promote habit formation 94,95,100,123 
and, thus, would make it more difficult to neurobiologically prevent stress-potentiated habit, increasing the 
robustness of the results. Following training, mice received a counterbalanced set of sensory-specific satiety 
outcome-specific devaluation tests, as above. Mice were tethered but no laser was delivered on test days. Mice 
received laser as in training during the intervening retraining session. After instrumental training and testing, 
mice were tested in the RTPP test as described above. Mice were then perfused and brain tissue was processed 
with standard histology procedures described below to assess viral expression location/spread and fiber 
placement. 
 
Optogenetic activation of CeADMS projections during instrumental learning 
Male and female (GFP N = 18, 9 male; ChR2: N = 20, 12 male) naïve mice were used in this experiment to 
assess whether CeADMS projection activation at outcome experience during learning is sufficient to promote 
habit formation. 11 subjects with off-target viral expression or fiber location and 4 subjects who did not complete 
instrumental conditioning were excluded from the dataset. Mice were randomly assigned to Virus group. Given 
the low density of CeADMS projections, we choose to activate DMS-projecting CeA cell bodies. At surgery, 
mice received bilateral infusion of a retrogradely trafficked AAV encoding cre-recombinase (AAVrg-Syn-Cre-
P2A-dTomato, Addgene) into the DMS (0.3 µl) and AAV encoding the cre-inducible excitatory opsin 
channelrhodopsin 2 (ChR2; AAV8-Syn-DIO-ChR2-eYFP, Stanford Vector Core) or fluorophore control (AAV8-
Syn-DIO-eYFP, Stanford Vector Core) into the CeA (0.1-0.2 µl). Optic fiber cannulae (4.4-mm length, 100-µm 
diameter, 0.22 NA, Inper) were implanted over the CeA. Mice were given 3 weeks to recover and allow for viral 
expression. Mice were habituated to restraint for 3 days prior to instrumental conditioning. During instrumental 
conditioning, mice were tethered to a 100-µm diameter optic fiber bifurcated patchcord (Inper) attached to a 473-
nm laser (Dragon Laser) via a rotary joint. Mice were habituated to the tether during the magazine training 
session, but no laser was delivered. Beginning with the first FR-1 session, all subjects received laser delivery 
during reward collection (first magazine entry after reward delivery; 2-s duration, 20 Hz, 5-ms pulse width, 8-10 
mW). After completion of FR-1, mice received 1 day each of training on an RR-2, RR-5, and RR-10 reinforcement 
schedule (max 20 outcomes/20 min/session). We chose an RR schedule of reinforcement for this experiment 
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because it tends to promote action-outcome learning and goal-directed behavioral control 94,95,100,123 and, thus, 
would make it more difficult to neurobiologically induce habit formation, increasing the robustness of the results. 
Following training mice received a counterbalanced set of sensory-specific satiety outcome-specific devaluation 
tests, as above. Mice were tethered but no laser was delivered on test days. Mice received laser as in training 
during the intervening retraining session. After instrumental training and testing, mice were tested in the RTPP 
test, as described above. Mice were then perfused and brain tissue was processed with standard histology 
procedures described below to assess viral expression location/spread and fiber placement. 
 
Optogenetic activation of CeADMS projections during instrumental learning following sub-threshold 
CUS 
Male and female (GFP N = 12, 5 male; ChR2: N = 18, 8 male) naïve mice were used in this experiment to assess 
whether CeADMS projection activation at outcome experience during learning is sufficient to promote habit 
formation in mice with a history of less-frequent CUS (subthreshold for promoting habit formation). 9 subjects 
with off-target viral expression or fiber location and 3 subjects who did not complete instrumental conditioning 
were excluded from the dataset. Mice were randomly assigned to viral groups. Similar to optogenetic activation 
of CeADMS neurons in control mice, we chose to target cell bodies with this approach. At surgery, mice 
received bilateral infusion of a retrogradely trafficked AAV encoding cre-recombinase (AAVrg-Syn-Cre-P2A-
dTomato, Addgene) into the DMS (0.3 µl) and AAV encoding the cre-inducible excitatory opsin ChR2 (AAV8-
Syn-DIO-ChR2-eYFP, Stanford Vector Core) or fluorophore control (AAV8-Syn-DIO-eYFP, Stanford Vector 
Core) into the CeA (0.1-0.2 µl). Optic fiber cannulae (4.4-mm length, 100-µm diameter, 0.22 NA, Inper) were 
implanted over the CeA. Mice were given 1 - 2 weeks to recover post-surgery, followed by 14 consecutive days 
of once/daily CUS or daily handling as described above. Mice were habituated to restraint for attaching optical 
fibers during the final 3 days of the subthreshold CUS/handling period. 24 hours after the final stress exposure, 
mice began instrumental conditioning, as described above. During instrumental conditioning, mice were tethered 
to a 100-µm diameter optic fiber bifurcated patchcord (Inper) attached to a 473-nm laser (Dragon Laser) via a 
rotary joint. Mice were habituated to the tether during the magazine training session, but no laser was delivered. 
Beginning with the first FR-1 session, all subjects received laser delivery during reward collection, (first magazine 
entry after reward delivery; 2-s duration, 20 Hz, 5-ms pulse width, 8-10 mW). After completion of FR-1, mice 
received 1 day each of training on an RR-2, RR-5, and RR-10 reinforcement schedule (max 20 outcomes/20 
min/session). Following training mice received a counterbalanced set of sensory-specific satiety outcome-
specific devaluation tests, as above. Mice were tethered but no laser was delivered on test days. Mice received 
laser during the intervening retraining session. After instrumental training and testing, mice were tested in the 
RTPP test, as described above. Mice were then perfused and brain tissue was processed with standard histology 
procedures described below to assess viral expression location/spread and fiber placement. 

 
Immunohistochemistry 
Mice were anesthetized with isoflurane and transcardially perfused with ice-cold PBS followed by cold 4% 
paraformaldehyde. The brains were removed, post-fixed in 4% paraformaldehyde, then cryoprotected in 30% 
sucrose in PBS. 30-µm coronal slices were taken on a cryostat and collected in PBS. Immunohistochemical 
analysis was performed as described previously162,166-168. Briefly, floating sections were blocked for 1 hour at 
room temperature in blocking solution (3% normal goat serum (NGS, Jackson ImmunoResearch Laboratories), 
0.3% Triton X-100 (Fisher)) in PBS and then incubated overnight with gentle agitation at 4 °C in blocking solution 
plus 1:1000 dilution primary antibody (chicken anti-GFP polyclonal, Abcam; rabbit anti-dsRed polyclonal, Takara 
Bio). Sections were then incubated covered with gentle agitation for 2 hours at room temperature in blocking 
solution plus 1:500 dilution secondary antibody (goat anti-rabbit IgG Alexafluor 594 conjugate; goat anti-chicken 
IgG Alexafluor 488 conjugate, Invitrogen). All sections were washed 3 times for 5 min each in PBS before and 
after each incubation step and mounted on slides using ProLong Gold antifade reagent with DAPI (Invitrogen). 
All images were acquired using a Keyence (BZ-X710) microscope with 4X, 10X, and 20X objectives (CFI Plan 
Apo), CCD camera, and BZ-X Analyze software and a Zeiss Confocal LSM with 2.5X and 20X objectives and 
Zeiss ZEN (blue edition) image acquisition software. 
 
Statistical Analysis 
Datasets were analyzed by 2-tailed t-tests, or 1-, 2-, or 3-way repeated-measures analysis of variance (ANOVA), 
as appropriate (GraphPad Prism, GraphPad, San Diego, CA; SPSS, IBM, Chicago, IL). Some datasets were 
slightly non-normally distributed. For these datasets statistical tests were also run on the normally-distributed 
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log-transformed data and the results were highly consistent (Supplemental Table 4). We opted to use parametric 
statistics for consistency across experiments and given evidence that ANOVA is robust to slight non-
normality169,170. Bonferroni post hoc tests corrected for multiple comparisons were performed to clarify statistical 
interactions. Greenhouse-Geisser correction was applied to mitigate the influence of unequal variance between 
conditions. Alpha levels were set at P < 0.05. 
 
Sex as a biological variable 
For the initial behavioral finding, sex was included as a factor in the ANOVA and found to not significantly account 
for variance (No main effect of Sex on lever pressing acquisition: F(1, 43) = 0.43, P = 0.51, devaluation test press 
rate: F(1,43) = 0.60, P = 0.44, or  devaluation index: F(1,43) = 0.04, P = 0.84). Therefore, data from male and female 
mice was combined for analyses. For subsequent experiments, male and female mice were used in 
approximately equal numbers, but the N per sex was underpowered to examine sex differences. Sex was 
therefore not included as a factor in statistical analyses, though individual data points are visually disaggregated 
by sex. 
 
Rigor and reproducibility 
Group sizes were estimated based on prior work with this behavioral task171 and to ensure counterbalancing of 
virus, stress, pellet type, and devaluation test order. Investigators were not blinded to viral or stress group 
because they were required to administer infusions and stress exposure. All behaviors were scored using 
automated software (Med Associates). Each experiment included at least 1 replication cohort and cohorts were 
balanced by Viral group, Stress group, and hemisphere (for photometry recordings and tracing) prior to the start 
of the experiment. Investigators were blinded to group when performing histological validation and determining 
exclusions based on viral spread or mistargeted implant.  
 
Data and code availability 
All data that support the findings of this study are available from the corresponding author upon request. Custom-
written MATLAB code is accessible via Dryad repository172 and available from the corresponding author upon 
request. 
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SUPPLEMENTAL FIGURES AND TABLES 
 

 
Supplemental Figure 1-1: Chronic mild unpredictable stress does not cause classic anxiety- and 
depression-like phenotypes. Mice received 14 consecutive d of chronic mild unpredictable stress (CUS) 
including twice daily exposure to 1 of 6 mild stressors at pseudorandom times and orders: damp bedding (16 hr), 
tilted cage (16 hr), white noise (80 db; 2 hr), continuous illumination (8 hr), physical restraint (2 hr), footshock (0.7-
mA, 1-s, 5 shocks/10 min) prior to subsequent testing in a battery of behavioral assays classically used to assess 
anxiety- and depression-like behavior. (a-c) Distance traveled (a; t(22) = 0.32, P = 0.75), time spent in center zone 
(b; t(22) = 1.10, P = 0.28), and entries into center zone (c; t(22) = 0.63, P = 0.54) of the open field test. (d-f) Distance 
traveled (d; t(22) = 0.08, P = 0.94), time spent in open arms (e; t(22) = 0.01, P = 0.92), and entries into open arms 
(f; t(22) = 0.23, P = 0.82) of the elevated plus maze. (g-i), Distance traveled in light zone (g; t(22) = 0.97, P = 0.34), 
time spent in light zone (h; t(22) = 1.57, P = 0.13), and entries into light zone (I; t(22) = 1.37, P = 0.19) of light-dark 
emergence test. (j-k) Average amount consumed of water and 10% sucrose over 24 hr (j; Solution: F(1, 22) = 
113.20, P < 0.0001; Stress: F(1, 22) = 0.14, P = 0.71, Solution x Stress: F(1, 22) = 0.02, P = 0.89) and ratio of 
sucrose:water consumed (k; t(22) = 0.03, P = 0.98) during the sucrose preference test. (l-m) Total presses (l; t(22) 
= 2.13, P = 0.04) and breakpoint (k; Final ratio completed; t(22) = 2.12, P = 0.46) during the progressive ratio test. 
Control N = 12 (6 male), Stress N = 12 (6 male). Males = closed circles, Females = open circles. *P <0.05, ***P 
<0.001. Our CUS procedure does not affect general locomotor activity or avoidance of anxiogenic spaces or 
create an anhedonia phenotype. Rather this CUS procedure appears to cause elevated motivation to exert effort 
to obtain reward. This contrasts with more severe, longer-lasting CUS procedures, which do produce anxiety- 
and depression-like phenotypes in these tasks155,173,174. Thus, our CUS procedure models chronic, low-level 
stress. 
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Supplemental Figure 1-2: Food-port entries during training and devaluation probe tests following 
handling control or chronic stress. (a) Food-port entry rate across training following CUS (Stress) or daily 
handling control. Training: F(2.42, 108.90) = 3.17, P = 0.04; Stress: F(1, 45) = 0.07, P = 0.79; Training x Stress: F(3, 135) 
= 0.57, P = 0.64. (b) Food-port entries during the subsequent devaluation probe tests. Value: F(1, 45) = 6.77, P = 
0.01, Stress: F(1, 45) = 0.29, P = 0.60; Stress x Value: F(1, 45) = 2.42, P = 0.13. Control N = 22 (13 male), Stress N 
= 25 (12 male). Males = solid lines, Females = dashed lines. *P < 0.05. 
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Supplemental Figure 2: BLA and CeA directly project to DMS. (a) Top: Anterograde tracing approach. 
Infusion of an AAV expressing mCherry into the CeA. Bottom: mCherry labeling at infusion site in CeA (left) and 
mCherry-labeled fibers in the DMS (right). N = 4 (2 male). We observed mCherry-expressing putative fibers in 
the DMS but not dorsolateral striatum. Expression was also detected in other well-known CeA projection targets 
such as the bed nucleus of the stria terminalis. (b) Top: Retrograde tracing approach. We infused the 
fluorescently labeled retrograde tracer Fluorogold into the DMS. Bottom: Fluorogold labeling at infusion site in 
DMS (left) and fluorogold-labeled, DMS-projecting cell bodies in BLA and CeA (middle), with CeA magnified 
(right). Labeled cells was detected in both BLA and CeA, indicating that both BLA and CeA directly project to 
DMS. Labeling was greater in BLA than CeA, indicating the BLADMS pathway is denser than the CeADMS 
pathway. N = 4 (2 male). (c) Top: Approach for rabies trans-synaptic retrograde tracing of DMS Drd1+ striatal 
neurons. We used rabies tracing to confirm monosynaptic amygdala projections onto DMS neurons. We infused 
a starter virus expressing cre-dependent TVA-oG-GFP into the DMS of mice expressing cre-recombinase under 
the control of dopamine receptor 1 (D1-Cre) or adenosine 2a receptor (A2A-Cre) genes175,176, followed by ∆G-
deleted rabies-mCherry to retrogradely label cells that synapse onto DMS D1 or A2A neurons. Bottom: Starter 
oG virus (green) and ∆G-deleted rabies-mCherry (red) expression in DMS Drd1+ neurons (left) and rabies-
labeled, DMS D1-projecting cell bodies in the BLA and CeA (right), consistent with prior reports80,81. 
Representative example from N = 4 (3 males). (d) Top: Approach for rabies trans-synaptic retrograde tracing of 
DMS Adora2a+ neurons. Bottom: Starter ∆G virus (green) and rabies-mCherry (red) expression in DMS Adora2a+ 
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neurons (left) and rabies-labeled, DMS A2A-projecting cell bodies in the BLA and CeA (right). Representative 
example N = 4 (3 males). Combined, these data confirm that both BLA and CeA directly project to the DMS and 
are, thus, poised to influence the learning that supports goal-directed behavioral control and habit formation. 
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Supplemental Figure 2-1: Food-port entries during training with fiber photometry recording of 
BLADMS or CeADMS calcium activity following handling control or chronic stress. (a) Food-port entry 
rates across training for BLADMS GCaMP8s mice following CUS (Stress) or daily handling control. Training: 
F(2.47, 46.99) = 0.65, P = 0.56; Stress: F(1, 19) = 0.05, P = 0.82; Training x Stress: F(3, 57) = 0.24, P = 0.87. BLA Control 
N = 9 (4 male), BLA Stress N = 12 (5 male). (b) Food-port entry rates across training for CeADMS GCaMP8s 
mice following CUS or daily handling control. Training: F(2.36, 47.19) = 0.89, P = 0.43; Stress: F(1, 20) = 2.71, P = 0.12; 
Training x Stress: F(3, 60) = 0.09, P = 0.96. CeA Control N = 11 (6 male), CeA Stress N = 11 (4 male). Males = 
solid lines, Females = dashed lines. 
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Supplemental Figure 2-2: BLADMS and CeADMS pathway responses to unpredicted rewarding and 
aversive events in control and stressed mice. Following instrumental training (Figure 2), we used fiber 
photometry to record GCaMP8s fluorescent changes in either BLA (top) or CeA (bottom) neurons that project to 
the DMS in response to unpredicted food-pellet reward deliveries or unpredicted 2-s, 0.7 mA footshocks in control 
and stressed mice. (a) Trial-averaged Z-scored Δf/F BLADMS GCaMP8s fluorescence changes around 
unpredicted food-pellet reward delivery. (b) Trial-averaged quantification of area under the BLADMS 
GCaMP8s Z-scored ∆f/F curve (AUC) during the 3-s period prior to (baseline) and following reward collection. 
Stress x Reward: F(1, 18) = 10.88, P = 0.004; Reward: F(1, 18) = 1.19; P = 0.03; Stress: F(1, 18) = 1.77, P = 0.20. (c) 
Trial-averaged Z-scored Δf/F CeADMS GCaMP8s fluorescence changes around unpredicted food-pellet 
reward delivery. (d) Trial-averaged quantification CeADMS GCaMP8s Z-scored ∆f/F AUC during the 3-s period 
prior to and following reward collection. Stress x Reward: F(1, 20) = 11.79, P = 0.02; Reward: F(1, 20) = 8.14, P = 
0.01; Stress F(1, 20) = 4.49, P = 0.05. (e) Trial-averaged Z-scored Δf/F BLADMS GCaMP8s fluorescence 
changes around unpredicted footshock. (f) Trial-averaged quantification of BLADMS GCaMP8s Z-scored ∆f/F 
AUC during the 1-s acute shock response compared to a 1-s pre-shock baseline. Shock: F(1, 18) = 8.533, P = 
0.01; Stress: F(1, 18) = 0.1433, P = 0.71; Stress x Shock F(1, 18) = 1.725, P = 0.21 (g) Trial-averaged quantification 
of BLADMS GCaMP8s Z-scored ∆f/F AUC during 2-s post-shock period. t(18) = 2.26, P = 0.04. (h) Trial-
averaged Z-scored Δf/F CeADMS GCaMP8s fluorescence changes around unpredicted footshock. (i) Trial-
averaged quantification of CeADMS GCaMP8s Z-scored ∆f/F AUC during the 1-s acute shock response, 
compared to baseline. Shock: F(1, 20) = 28.24, P < 0.0001; Stress: F(1, 20) = 0.22, P = 0.64; Stress x Shock: F(1, 20) 
= 3.201, P = 0.09. (j) Trial-averaged quantification of CeADMS GCaMP8s Z-scored ∆f/F AUC during 2-s post-
shock period. t(20) = 0.8798, P = 0.39. BLA Control N = 8 (4 male), BLA Stress N = 12 (5 male). CeA Control N = 
11 (6 male), CeA Stress N = 11 (4 male). Males = solid lines, Females = dashed lines. BLADMS projections 
are activated by unpredicted rewards and this is attenuated by prior chronic stress. Conversely, CeADMS 
projections are not normally robustly activated by unpredicted rewards, but are activated by unpredicted rewards 
following chronic stress. Both BLADMS and CeADMS pathways are acutely activated by unpredicted 
footshock regardless of prior stress. Though chronic stress reduces post-shock activity in the BLADMS 
pathway.  
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Supplemental Figure 2-3: Chronic stress does not affect spontaneous calcium activity in BLADMS or 
CeADMS projections. (a-b) Frequency (a; Training: F(2.41, 45.69) = 0.17, P = 0.88; Stress: F(1, 19) = 0.08, P = 
0.78; Training x Stress: F(3, 57) = 0.85, P = 0.47) and amplitude (b; Training: F(2.48, 47.10) = 0.86, P = 0.45; Stress: 
F(1, 19) = 0.034, P = 0.85; Training x Stress: F(3, 57) = 1.37, P = 0.26) of Z-scored Δf/F spontaneous calcium activity 
of BLADMS projections during the 3-min baseline period prior to each training session in handled control and 
stressed mice. (c-d) Frequency (c; Training: F(2.70, 53.97) = 0.21, P = 0.88; Stress F(1, 20) = 3.03, P = 0.10; Training 
x Stress: F(3, 60) = 0.55, P = 0.65) and amplitude (d; Training: F(2.59, 51.83) = 0.32, P = 0.78; Stress: F(1, 20) = 3.70, P 
= 0.07; Training x Stress: F(3, 60) = 0.75, P = 0.52) of Z-scored Δf/F spontaneous calcium activity of CeADMS 
projections during the 3-min baseline period prior to each training session handled control and stressed mice. 
Males = solid lines, Females = dashed lines. Chronic stress did not alter baseline spontaneous calcium activity 
in either pathway.  
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Supplemental Figure 3-1: Food-port entries during training with BLADMS manipulations and 
devaluation probe tests. (a-b) Chemogenetic activation of BLADMS projections during post-stress 
instrumental learning. (a) Food-port entry rate across training following CUS (Stress) or daily handling control. 
Training: F(2.4, 68.12) = 1.20, P = 0.31; Group: F(2, 28) = 0.06, P = 0.94; Training x Group: F(6, 84) = 1.23, P = 0.30. (b) 
Food-port entry rate during the subsequent devaluation probe test immediately following sensory-specific satiety 
devaluation of the trained pellet (Devalued condition) or an alternate pellet type (Valued condition). Value: F(1, 28) 
= 13.36, P = 0.001; Group: F(2, 28) = 1.60, P = 0.22; Group x Value: F(2, 28) = 1.85, P = 0.18. Control mCherry N = 
12 (7 male), Stress mCherry N = 9 (5 male), Stress hM3Dq N = 10 Stress (5 male). (c-d) Optogenetic inactivation 
of BLADMS projections at reward during instrumental learning. (c) Food-port entries across training. Training: 
F(2.03, 38.55) = 3.30, P = 0.05; Virus: F(1, 19) = 0.14, P = 0.71; Training x Virus: F(3, 57) = 0.43, P = 0.73. (d) Food-port 
entry rates during subsequent devaluation probe tests. Stress x Value: F(1, 19) = 4.38, P = 0.05; Stress: F(1, 19) = 
0.47, P = 0.50; Value: F(1, 19) = 0.39, P = 0.54. GFP N = 10 (5 males), Arch N = 11 (5 male). Males = solid lines, 
Females = dashed lines. **P < 0.01.  
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Supplemental Figure 3-2: Effect of BLADMS chemogenetic activation on action-outcome learning. 
Using an intersectional approach (Figure 3a), we expressed the excitatory designer receptor human M3 
muscarinic receptor (hM3Dq) or fluorophore control in BLADMS neurons. Mice received instrumental training 
to lever press to earn food-pellet rewards. Prior to each training session, mice received the hM3Dq ligand 
clozapine-N-oxide (CNO; 0.2 mg/kg i.p.). Press rate across training. Training: F(2.27, 36.30) = 43.87, P < 0.0001; 
Virus: F(1, 16) = 0.50, P = 0.49; Training x Virus: F(3, 48) = 0.80, P = 0.50. (b) Food-port entry rate across training. 
Training: F(2.57, 41.19) = 1.18, P = 0.33; Virus: F(1, 16) = 0.007, P = 0.93. Training x Virus: F(3, 48) = 2.23, P = 0.10. 
Chemogenetic activation of BLADMS projections did not alter acquisition of the instrumental lever-press 
behavior. (c) Press rate during the subsequent devaluation probe tests immediately following sensory-specific 
satiety devaluation of the trained pellet (Devalued condition) or an alternate pellet type (Valued condition). Value: 
F(1, 16) = 4.11, P = 0.06; Virus: F(1, 16) = 1.92 P = 0.19; Virus x Value: F(1, 16) = 0.57, P = 0.46. (d) Devaluation index. 
t(16) = 2.69, P = 0.02. (e) Food-port entry rate during devaluation probe tests. Value: F(1, 16) = 4.56, P = 0.05; Virus: 
F(1, 16) = 0.43, P = 0.52; Virus x Value: F(1, 16) = 0.0002, P = 0.99. mCherry N = 12 (7 male), hM3Dq N = 6 (3 male). 
Males = closed circles/solid lines, Females = open circles/dashed lines. *P < 0.05. Chemogenetic activation of 
BLADMS projections in subjects without a history of chronic stress slightly promotes habit formation, likely by 
disrupting the endogenous pattern of activity (see Figure 2d-i) in this pathway that is important for action-outcome 
learning (see Figure 3h-n). 
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Supplemental Figure 3-3: Inhibition of BLA terminals in DMS is not rewarding or aversive. Following 
training and testing (Figure 3h-n) mice receive a real-time place preference test in which 1 side of a 2-chamber 
apparatus was paired with optogenetic inhibition of BLA axons and terminals in the DMS. Average percent time 
spent in light-paired chamber across 2, 10-minute sessions (one with light paired with each side). t(19) = 0.65, P 
= 0.5. GFP N = 10 (5 male), Arch N = 11 (5 male). Males = closed circles, Females = open circles. 
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Supplemental Figure 4-1: Food-port entries during training with CeADMS manipulations and 
devaluation probe tests. (a-b) Chemogenetic inhibition of CeADMS projections during post-stress 
instrumental learning. (a) Food-port entry rates across training following CUS (Stress) or daily handling control. 
Training: F(1.85, 53.71) = 1.07, P = 0.35; Group: F(2, 29) = 1.25, P = 0.30; Training x Group: F(6, 87) = 2.93, P = 0.01. 
(b) Food-port entry rates during the subsequent devaluation probe tests. Value: F(1, 30) = 2.65, P = 0.11; Group: 
F(2, 30) = 0.23, P = 0.80; Group x Value: F(2, 30) = 0.96, P = 0.40. Control mCherry N = 12 (5 male), Stress mCherry 
N = 11 (5 male), Stress hM4Di N = 9 (4 male). (c-d) Optogenetic inactivation of CeADMS projections at reward 
during post-stress learning. (c) Food-port entry rates across training following CUS or daily handling control. 
Training x Group: F(6, 60) = 2.33, P = 0.04; Training: F(2.14, 42.88) = 1.46, P = 0.24; Group: F(2, 20) = 1.22, P = 0.32. 
(d) Food-port entry rates during the subsequent devaluation probe tests. Value: F(1, 20) = 4.73, P = 0.04; Group: 
F(2, 20) = 0.89, P = 0.43; Group x Value: F(2, 20) = 0.30, P = 0.74. Control GFP N = 7 (4 male), Stress GFP N = 7 
(6 male), Stress Arch N = 9 (5 male). (e-f) Optogenetic stimulation of CeADMS projections at reward during 
learning. (e) Food-port entries across training. Training: F(2.42, 50.77) = 2.00, P = 0.14; Virus: F(1, 21) = 1.85, P = 0.19; 
Training x Virus: F(3, 63) = 0.22, P = 0.88. (f) Food-port entries during the subsequent devaluation probe tests. 
Value: F(1, 21) = 30.07, P < 0.0001; Virus: F(1, 21) = 0.12, P = 0.73; Virus x Value: F(1, 21) = 3.45, P = 0.08. GFP N = 
17 (9 male), ChR2 N = 6 (3 male). (g-h) Optogenetic stimulation of CeADMS projections at reward during 
learning following subthreshold once daily CUS (SubStress). (g) Food-port entry rates across training session 
following once/daily, 14 d CUS. Training: F(1.47, 23.44) = 0.24, P = 0.72; Virus: F(1, 16) = 0.07, P = 0.80; Training x 
Virus: F(3, 48) = 0.52, P = 0.67. (h) Food-port entry rates the subsequent during devaluation probe tests. Virus: 
F(1, 16) = 0.05, P = 0.83; Value: F(1, 16) = 0.95, P = 0.34; Virus x Value: F(1, 16) = 0.95, P = 0.34. GFP N = 8 (4 male), 
ChR2 N = 10 (6 male). Males = solid lines, Females = dashed lines. ** P < 0.01, *** P < 0.001. 
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Supplemental Figure 4-2: Effect of CeADMS inhibition on action-outcome learning. (a-e) Chemogenetic 
inhibition of CeADMS projections during instrumental learning. Using an intersectional approach (Figure 4a), 
we expressed the inhibitory designer receptor human M4 muscarinic receptor (hM4Di) or fluorophore control in 
CeADMS neurons. Mice received instrumental training to lever press to earn food pellet rewards. Prior to each 
training session, mice received the hM4Di ligand clozapine-N-oxide (CNO; 2.0 mg/kg i.p.). (a) Press rate across 
training. Training: F(1.70, 39.13) = 16.75, P < 0.0001; Virus: F(1, 23) = 0.22, P = 0.65; Training x Virus: F(3, 69) = 0.10, P 
= 0.96. (b) Food-port entry rate across training. Training: F(1.85, 42.64) = 3.35, P = 0.05; Virus: F(1, 23) = 0.55, P = 
0.46; Training x Virus: F(3, 69) = 0.49, P = 0.69. Chemogenetic inhibition of CeADMS projections did not alter 
acquisition of the instrumental lever-press behavior. (c) Press rate during the subsequent devaluation probe 
tests immediately following sensory-specific satiety devaluation of the trained pellet (Devalued condition) or an 
alternate pellet type (Valued condition). Virus x Value: F(1, 23) = 6.72, P = 0.02; Virus: F(1, 23) = 2.44, P = 13; Value: 
F(1, 23) = 12.55, P = 002. (d) Devaluation index. t(23) = 1.58, P = 0.13. (e) Food-port entry rate during devaluation 
probe tests. Value: F(1, 23) = 5.17, P = 0.03; Virus: F(1, 23) = 0.69, P = 0.04; Virus x Value: F(1, 23) = 0.38; P = 0.54. 
mCherry N = 12 (5 male), hM4Di N = 13 (8 male). Chemogenetic inactivation of CeADMS projections slightly 
disrupted action-outcome learning, likely by altering typical signaling dynamics in this pathway. (f-j) Optogenetic 
inactivation of CeADMS projections at reward during post-stress learning. We expressed the inhibitory opsin 
archaerhodopsin  (Arch) or fluorophore control in the CeA and implanted optical fibers in the DMS in the vicinity 
of Arch-expressing CeA axons and terminals (Figure 4h-j). Mice received instrumental training to lever press to 
earn food-pellet rewards. We used green light (532 nm, 10 mW, 5 s) to inhibit CeA terminals in the DMS during 
the collection of each earned reward. (f) Press rate across training. Training: F(1.98, 27.70) = 13.11, P = 0.0001; 
Virus: F(1, 14) = 0.28, P = 0.60; Training x Virus: F(3, 42) = 0.29, P = 0.83. (g) Food-port entry rate across training. 
Training: F(2.57, 35.95) = 0.57, P = 0.61; Virus: F(1, 14) = 2.50, P = 0.14; Training x Virus: F(3, 42) = 2,20, P = 0.10. 
Optogenetic inhibition of CeADMS projections did not alter acquisition of the instrumental lever-press behavior. 
(h) Press rate during the subsequent devaluation probe tests. Value: F(1, 14) = 4.91, P = 0.04; Virus: F(1, 14) = 0.55, 
P = 0.47; Virus x Value: F(1, 14) = 0.007, P = 0.93. (i) Devaluation index. t(14) = 0.17, P = 0.87. (j) Food-port entry 
rate during devaluation probe tests. Value: F(1, 14) = 1.77, P = 0.20; Virus F(1, 14) = 0.08, P = 0.78; Virus x Value: 
F(1, 14) = 0.10, P = 0.76. GFP N = 7 (4 male), Arch N = 9 (4 male). Males = closed circles/solid lines, Females = 
open circles/dashed lines. *** P < 0.001. Optogenetic inactivation of CeADMS projections did not alter action-
outcome learning for goal-directed behavioral control. 
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Supplemental Figure 4-3: Optogenetic stimulation of CeADMS projections in control mice. (a) We used 
an intersectional approach to express the excitatory opsin Channelrhodopsin 2 (ChR2), or a fluorophore control 
in DMS-projecting CeA neurons and implanted optic fibers above the CeA. (b) Representative images of retro-
cre expression in DMS and immunofluorescent staining of cre-dependent ChR2 expression in CeA. (c) 
Schematic representation of retro-cre in DMS and cre-dependent ChR2 expression in CeA for all subjects. (d) 
Procedure schematic. We used blue light (473 nm, 10 mW, 20 Hz, 25-ms pulse width, 2 s) to stimulate 
CeADMS neurons during the collection of each earned reward in mice without a history of stress. Valued state 
= prefed on untrained food-pellet type to control for general satiety. Devalued state = prefed on trained food-
pellet type to induce sensory-specific satiety devaluation.  (e) Press rates across training. Training: F(1.85, 38.75) = 
62.18, P < 0.0001; Virus: F(1, 21) = 0.23, P = 0.64; Training x Virus: F(3, 63) = 0.05, P = 0.98. (f) Press rate during 
the subsequent devaluation probe test immediately following sensory-specific satiety on the trained pellet 
(Devalued condition) or an alternate pellet type (Valued condition). Value: F(1, 21) = 20.32, P = 0.0002; Virus: F(1,21) 
= 0.92, P = 0.35; Virus x Value: F(1, 21) = 1.17, P = 0.29. (g) Devaluation index. t(21) = 1.37, P = 0.19. GFP N = 17 
(9 male), ChR2 N = 6 (3 male). Optogenetic activation of CeADMS projections at reward during learning neither 
affects affect acquisition of the lever-press behavior, nor the action-outcome learning needed to support flexible 
goal-directed behavioral control during the devaluation test.  
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Supplemental Figure 4-4: Activation of CeADMS projections is neither rewarding or aversive. Following 
training and testing (Figure 4-3 and Figure 4o-u) mice receive a real-time place preference test in which 1 side 
of a 2-chamber apparatus was paired with optogenetic stimulation of DMS-projecting CeA neurons. (a) Average 
percent time spent in light paired chamber across 2, 10-minute sessions (one with light paired with each side) in 
handled control subjects. t(21) = 1.75, P = 0.10. GFP N = 17 (9 male), ChR2 N = 6 (3 male). (b) Average percent 
time spent in light paired chamber across 2, 10-minute sessions (one with light paired with each side) in subjects 
with a prior once/daily CUS for 14 d. t(16) = 0.52, P = 0.61. GFP N = 8 (4 male), ChR2 N = 10 (6 male). Males = 
closed circles, Females = open circles.   
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    Body Weight 

    
Training 

Start  
Training 

End Statistics 

Figure 1 Control 21.67 ± 0.82 21.54 ± 0.90 Stress x Time: F(1, 45) = 0.08, P= 0.77; Stress: F(1, 45) = 0.60, P= 0.44; Time: F(1, 45) = 1.79, P= 
0.19 Stress 20.79 ± 0.81 20.60 ± 0.82 

Figure 3 

Control CeA 20.06 ± 0.94 20.24 + 0.71 Stress x Training: F(1, 20) = 0.16, P= 0.70; Stress: F(1, 20) = 1.02, P= 0.32; Training: F(1, 20) = 
0.11, P= 0.75 Stress CeA 19.12 ± 0.60 19.10 + 0.72 

Control BLA 20.54 ± 1.00 20.25 + 0.92 Stress x Training: F(1, 19) = 2.67, P= 0.12; Stress: F(1, 19) = 2.24, P= 0.15; Training: F (1, 19) = 
0.02, P= 0.88 Stress BLA 18.66 ± 0.60 19.01 + 0.56 

Figure 4 
top 

Control mCherry 21.48 ± 1.01 21.08 ± 0.97 
Group x Training: F(2, 28) = 0.20, P= 0.82; Group: F(2, 28) = 0.58, P= 0.57; Training: F(1, 28) = 
1.57, P= 0.22 Stress mCherry 20.65 ± 0.86 20.53 ± 0.97 

Stress hM3Gq 20.06 ± 0.75 19.87 ± 0.72 

Figure 4-2 Control mCherry 21.48 ± 1.01 21.08 ± 0.97 Virus x Training: F(1, 16) = 2.00, P= 0.18; Virus: F(1, 16) = 0.45, P= 0.51; Training: F(1, 16) = 
0.003, P= 0.96 Control hM3Gq 19.91 ± 1.34 20.35 ± 1.64 

Figure 4 
bottom 

GFP 21.91 ± 1.30 21.25 ± 1.24 Virus x Training: F(1, 19) = 8.58, P= 0.009; Virus: F(1, 19) = 0.31, P= 0.59; Training: F(1, 19) = 
4.96, P= 0.04 Arch 20.73 ± 0.81 20.82 ± 0.75 

Figure 5 
top 

Control mCherry 21.81 ± 1.11 21.94 ± 1.11 
Group x Training: F(2, 29) = 0.53, P= 0.59; Group: F(2, 29) = 0.08, P= 0.93; Training: F(1, 29) = 
0.87, P= 0.36 Stress mCherry 21.24 ± 1.03 21.66 ± 0.97 

Stress hM4Gi 21.34 ± 1.08 21.30 ± 0.98 

Figure 5-2 
top 

Control mCherry 21.81 ± 1.11 21.94 ± 1.11 Virus x Training: F(1, 23) = 0.01, P= 0.92; Virus: F(1, 23) = 0.51, P= 0.48; Training: F(1, 23) = 0.44, 
P= 0.51 Control hM4Gi 22.77 ± 0.90 22.96 ± 0.86 

Figure 5 
middle 

Control mCherry 21.44 ± 0.70 21.38 ± 0.79 
Group x Training: F(2, 20) = 0.86, P= 0.44; Group: F(2, 20) = 1.02, P= 0.38; Training: F(1, 20) = 
4.66, P= 0.04 Stress mCherry 22.76 ± 0.99 22.03 ± 0.82 

Stress Arch 21.00 ± 0.92 20.36 ± 0.92 

Figure 5-2 
bottom 

Control mCherry 21.44 ± 0.70 21.38 ± 0.79 Virus x Training: F(1, 14) = 0.15, P= 0.71; Virus: F(1, 14) = 0.70, P= 0.42; Training: F(1, 14) = 0.02, 
P= 0.90 Control Arch 20.28 ± 1.03 20.31 ± 1.01 

Figure 5-3 Control GFP 20.87 ± 0.75 20.81 ± 0.70 Virus x Training: F(1, 21) = 0.79, P= 0.38; Virus: F(1, 21) = 0.94, P= 0.34; Training: F(1, 21) = 0.15, 
P= 0.70 Control ChR2 19.34 ± 1.39 19.50 ± 1.4 

Figure 5 
bottom 

Sub-Stress GFP 19.33 ± 0.74 19.57 ± 0.73 Virus x Training: F (1, 16) = 4.55, P= 0.05; Virus: F(1, 16) = 1.73, P= 0.21; Training: F(1, 16) = 
0.008, P= 0.93 Sub-Stress ChR2 21.32 ± 1.04 21.05 ± 1.01 

 
Supplemental Table 1: Body weight across training. Values reflect average weight in grams ± s.e.m.  
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    Prefeed Consumption 

    
Valued 

Outcome 
Devalued 
Outcome Statistics 

Figure 1 Control 1.33 ± 0.09 1.32 ± 0.10 Stress x Value: F(1, 45) = 0.18, P = 0.67; Stress: F(1, 45) = 0.13, P = 0.72; Value: F(1, 45) = 0.33, 
P = 0.57 Stress 1.33 ± 0.08 1.25 ± 0.09 

Figure 4 
top 

Control mCherry 1.10 ± 0.68 1.39 ± 0.14 
Group x Value: F(2, 28) = 3.93, P = 0.03; Group: F(2, 28) = 1.51, P = 0.24; Value: F(1, 28) = 0.70, 
P = 0.41 Stress mCherry 1.56 ± 0.13 1.28 ± 0.09 

Stress hM3Gq 1.53 ± 0.10 1.23 ± 0.14 

Figure 4-2 Control mCherry 1.10 ± 0.68 1.39 ± 0.14 Virus x Value: F(1, 16) = 0.10, P = 0.76; Virus: F(1, 16) = 0.83, P = 0.38; Value: F(1, 16) = 3.50, P 
= 0.08 Control hM3Gq 1.27 ± 0.15 1.47 ± 0.17 

Figure 4 
bottom 

GFP 1.57 0.19 1.40 0.07 Virus x Value: F(1, 19) = 0.46, P = 0.50; Virus: F(1, 19) = 0.007, P = 0.94; Value: F(1, 19) = 0.21, P 
= 0.65 Arch 1.48 0.19 1.51 0.16 

Figure 5 
top 

Control mCherry 0.72 ± 0.13 0.80 ± 0.13 
Group x Value: F(2, 29) = 0.62, P = 0.54; Group: F(2, 29) = 1.13, P = 0.34; Value: F(1, 29) = 0.17, 
P = 0.68 Stress mCherry 0.57 ± 0.16 0.54 ± 0.12 

Stress hM4Gi 0.80 ± 0.14 0.79 ± 0.14 

Figure 5-2 
top 

Control mCherry 0.72 ± 0.13 0.80 ± 0.13 Virus x Value: F(1, 23) = 0.34, P = 0.57; Virus: F(1, 23) = 0.04, P = 0.85; Value: F(1, 23) = 0.20, P 
= 0.66 Control hM4Gi 0.69 ± 0.07 0.53 ± 0.13 

Figure 5 
middle 

Control mCherry 1.76 ± 0.16 1.64 ± 0.14 
Group x Value: F(2, 20) = 0.91, P = 0.42; Group: F(2, 20) = 2.66, P = 0.09; Value: F(1, 20) = 0.007, 
P = 0.93 Stress mCherry 1.49 ± 0.14 1.70 ± 0.17 

Stress Arch 1.42 ± 0.16 1.31 ± 0.10 

Figure 5-2 
bottom 

Control mCherry 1.76 ± 0.16 1.64 ± 0.14 Virus x Value: F(1, 14) = 1.28, P = 0.28; Virus: F(1, 14) = 3.75, P = 0.07; Value: F(1, 14) = 0.15, P 
= 0.70 Control Arch 1.38 ± 0.12 1.61 ± 0.13 

Figure 5-3 Control GFP 1.31 ± 0.09 1.47 ± 0.12 Virus x Value: F(1, 25) = 0.016, P = 0.90; Virus: F(1, 25) = 0.24, P = 0.63; Value: F(1, 25) = 1.96, P 
= 0.17 Control ChR2 1.36 ± 0.16 1.55 ± 0.15 

Figure 5 
bottom 

Sub-Stress GFP 1.56 ± 0.21 1.53 ± 0.15 Virus x Value: F(1, 16) = 0.09, P = 0.77; Virus: F(1, 16) = 1.22, P = 0.29; Value: F(1, 16) = 0.01, P = 
0.92 Sub-Stress ChR2 1.68 ± 0.15 1.75 ± 0.14 

 
Supplemental Table 2: Sensory-specific satiety prefeed consumption. Values reflect average amount 
consumed in grams ± s.e.m. 
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    Average Choice Consumption 

    Valued 
Outcome 

Devalued 
Outcome Statistics 

Figure 1 
Control 0.25 ± 0.03 0.01 ± 0.01 Stress x Value: F(1, 26) = 0.002, P = 0.97; Stress: F(1, 26) = 0.006, P  =0.94; Value: F(1, 26) = 

132.10, P < 0.0001 Stress 0.25 ± 0.03 0.01 ± 0.01 

Figure 4 
top 

Control mCherry 0.23 ± 0.01 0.01 ± 0.01 
Group x Value: F(2, 28) = 1.28, P = 0.29; Group: F(2, 28) = 3.81, P = 0.03; Value: F(1, 28) = 248.30,  
P< 0.0001 Stress mCherry 0.29 ± 0.03 0.02 ± 0.01 

Stress hM3Gq 0.24 ± 0.02 0.01 ± 0.01 

Figure 4-2 
Control mCherry 0.23 ± 0.01 0.01 ± 0.01 Virus x Value: F(1, 16) = 0.82, P = 0.38; Virus: F(1, 16) = 1.63 P = 0.22; Value: F(1, 16) = 229.10, P 

< 0.0001 Control hM3Gq 0.24 ± 0.02 0.04 ± 0.03 

Figure 4 
bottom 

GFP 0.25 0.03 0.02 0.01 Virus x Value: F(1, 19) = 0.14, P = 0.71; Virus: F(1, 19) = 1.21, P = 0.29; Value: F(1, 19) = 118.00, P 
< 0.0001 Arch 0.30 0.04 0.05 0.02 

Figure 5 
top 

Control mCherry 0.16 ± 0.04 0.11 ± 0.04 
Group x Value: F(2, 29) = 0.32, P = 0.73; Group: F(2, 29) = 0.60, P = 0.55; Value: F(1, 29) = 2.25, P 
= 0.14 Stress mCherry 0.12 ± 0.04 0.10 ± 0.04 

Stress hM4Gi 0.21 ± 0.06 0.14 ± 0.04 

Figure 5-2 
top 

Control mCherry 0.16 ± 0.04 0.11 ± 0.04 Virus x Value: F(1, 23) = 0.03, P = 0.87; Virus: F(1, 23) = 0.37, P = 0.55; Value: F(1, 23) = 4.19, P = 
0.0522 Control hM4Gi 0.19 ± 0.05 0.16 ± 0.06 

Figure 5 
middle 

Control mCherry 0.27 ± 0.04 0.02 ± 0.01 
GrouP x Value: F(2, 20) = 2.40, P = 0.12; Group: F(2, 20) = 2.90, P = 0.08; Value: F(1, 20) = 
108.20, P < 0.0001 Stress mCherry 0.21 ± 0.03 0.02 ± 0.01 

Stress Arch 0.16 ± 0.02 0.01 ± 0.01 

Figure 5-2 
bottom 

Control mCherry 0.27 ± 0.04 0.02 ± 0.01 Virus x Value: F(1, 14) = 0.63, P = 0.44; Virus: F(1, 14) = 1.45, P = 0.25; Value: F(1, 14) = 66.50, P 
< 0.0001 Control Arch 0.21 ± 0.03 0.01 ± 0.01 

Figure 5-3 
Control GFP 0.27 ± 0.02 0.02 ± 0.01 Virus x Value: F(1, 25) = 0.001, P = 0.97; Virus: F(1, 25) = 0.22, P = 0.64; Value: F(1, 25) = 160.50, 

P < 0.0001 Control ChR2 0.28 ± 0.03 0.02 ± 0.01 

Figure 5 
bottom 

Sub-Stress GFP 0.27 ± 0.03 0 ± 0.01 Virus x Value: F(1, 16) = 0.18, P = 0.68; Virus: F(1, 16) = 0.001, P = 0.98; Value: F(1, 16) = 211.40, 
P < 0.0001 Sub-Stress ChR2 0.26 ± 0.02 0 ± 0.01 

 
Supplemental Table 3: Average post-probe-test choice consumption. Values reflect average amount 
consumed in grams ± s.e.m. 
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 Statistics on log transformed normalized data 

Figure 1d Training: F(2.19, 98.33) = 230.7, P < 0.0001; Stress: F(1, 45) = 1.50, P = 0.23; Training x Stress: F(3, 135) = 2.62, P = 
0.05 

Figure 1e Value x Stress: F(1, 45) = 6.80, P = 0.01; Value: F(1, 45) = 3.25, P = 0.08; Stress: F(1, 45) = 2.74, P = 0.01 

Figure 1-1a t(22 )= 0.25, P = 0.81 

Figure 1-1g t(22) = 1.05, P = 0.30 

Figure 1-1h t(22) = 1.66, P = 0.11 

Figure 1-1j Sucrose: F(1, 22) = 251.6, P < 0.0001; Stress: F(1, 22) = 1.88, P = 0.18; Sucrose x Stress: F(1, 22) = 0.17, P = 0.68 

Figure 1-2b Stress x Value: F(1, 45) = 6.76, P = 0.01; Value: F(1, 45) = 4.05, P = 0.05; Stress: F(1, 45) = 0.14, P = 0.71 

Figure 3e Training: F(2.86, 54.35) = 140.8, P < 0.0001; Stress: F(1, 19) = 1.36, P = 0.26 Training x Stress: F(3, 57) = 0.76, P = 0.52 

Figure 3k Training: F(2.34, 46.85) = 110.9, P < 0.0001; Stress: F(1, 20) = 0.65, P = 0.43; Training x Stress: F(3, 60) = 0.12, P = 
0.95 

Figure 3-1a Training: F(2.81, 53.39) = 1.07, P = 0.037; Stress: F(1, 19) = 0.23, P = 0.64; Training x Stress: F(3, 57) = 0.17, P = 0.91 

Figure 3-1b Training: F(2.50, 49.98) = 1.20, P = 0.32; Stress: F(1, 20) = 2.82, P = 0.11; Training x Stress: F(3, 60) = 0.23, P = 0.87 

Figure 3-3a Training: F(2.41, 45.76) = 0.28, P = 0.80; Stress: F(1, 19) = 0.08, P = 0.79; Training x Stress: F(3, 57) = 1.29, P = 0.29 

Figure 3-3b Training: F(2.50, 47.58) = 0.62, P = 0.58; Stress: F(1, 19) = 0.01, P = 0.93; Training x Stress: F(3, 57) = 1.39, P = 0.26 

Figure 3-3c Training: F(2.50, 50.01) = 0.31, P = 0.78; Stress: F(1, 20) = 2.77, P = 0.11; Training x Stress: F(3, 60) = 0.82, P = 0.49 

Figure 3-3d Training: F(2.68, 53.58) = 0.34; P = 0.71; Stress: F(1, 20) = 3.75, P = 0.07; Training x Stress: F(3, 60) = 0.49, P = 0.69 

Figure 4e Training: F(2.08, 58.34) = 122.3, P < 0.0001; Group: F(2, 28) = 0.28, P = 0.76; Training x Group: F(6, 84) = 0.74, P = 0.62  

Figure 4f Value: F(1, 28) = 24.00, P < 0.0001; Group: F(2, 28) = 1.91, P = 0.17; Value x Group: F(2, 28) = 3.25, P = 0.05 

Figure 4l Training: F(2.13, 40.54) = 66.41, P < 0.0001; Virus: F(1, 19) = 1.13, P = 0.30; Training x Virus: F(3, 57) = 0.89, P = 0.45 

Figure 4m Virus x Value: F(1, 19) = 13.52, P = 0.002; Virus: F(1, 19) = 0.40, P = 0.54; Value: F(1, 19) = 0.17, P = 0.68 

Figure 4-1c Value x Virus: F(1, 16) = 6.67, P = 0.02; Value: F(1, 16) = 8.56, P = 0.01; Virus: F(1, 16) = 2.43, P = 0.14 

Figure 4-1e Value: F(1, 16) = 4.37, P = 0.05; Virus: F(1, 16) = 1.02, P = 0.33; Value x Virus: F(1, 16) = 0.65, P = 0.43 

Figure 4-2b Value: F(1, 28) = 11.03, P = 0.002; Group: F(2, 28) = 2.39; P = 0.11; Group x Value: F(2, 28) = 1.70, P = 0.20 

Figure 4-2d Value: F(1, 19) = 5.89, P = 0.03; Virus: F(1, 19) = 0.47, P = 0.50; Virus x Value: F(1, 19) = 0.14, P = 0.71 

Figure 4-3 t(19) =0.60, P = 0.55 

Figure 5e Training: F(2.17, 62.90) = 25.48, P < 0.0001; Group: F(2, 29) = 0.17, P = 0.85; Training x Group: F(6, 87) = 1.19, P = 0.32 

Figure 5f Value: F(1, 29) = 16.02, P = 0.0004; Group: F(2, 29) = 3.26; P = 0.05; Group x Value: F(2, 29) = 3.29, P = 0.05 

Figure 5g F(2, 29) = 0.22, P = 0.07 

Figure 5l Training: F(2.88, 57.64) = 70.40, P < 0.0001; Group: F(2, 20) = 0.79, P = 0.47; Training x Group: F(6, 60) = 1.36, P = 
0.25 

Figure 5m Value x Group: F(2, 20) = 7.40, P = 0.004; Group: F(1, 20) = 7.53, P = 0.01;  Value: F(2, 20) = 2.55, P = 0.10 

Figure 5s Training: F(3, 48) = 115.0, P < 0.0001; Virus: F(1, 16) = 0.03, P = 0.87; Training x Virus: F(3, 48) = 0.15, P = 0.93 

Figure 5t Virus x Value: F(1, 16) = 8.36, P = 0.01; Virus: F(1, 16) = 0.57, P = 0.46; Value: F(1, 16) = 0.81, P = 0.38 

Figure 5-1a Training: F(2.36, 54.33) = 33.34, P < 0.0001; Virus: F(1, 23) = 0.22, P = 0.65; Training x Virus: F(3, 69) = 0.29, P = 0.84 

Figure 5-1b Training: F(1.95, 44.91) = 3.29, P = 0.05; Virus: F(1, 23) = 0.35, P = 0.56; Training x Virus: F(3, 69) = 0.44, P = 0.73 

Figure 5-1c Virus: F(1, 23) = 10.54, P = 0.004; Value: F(1, 23) = 0.98, P = 0.33; Value x Virus: F(1, 23) = 1.42, P = 0.24 

Figure 5-1d t(23) = 0.86, P = 0.40 

Figure 5-1f Training: F(2.46, 34.50) = 21.85, P < 0.0001; Virus: F(1, 14) = 0.67, P = 0.43; Training x Virus: F(3, 42) = 0.21, P = 0.89 

Figure 5-1g Training: F(3, 42) = 0.53, P = 0.66; Virus: F(1, 14) = 3.43, P = 0.09; Training x Virus: F(3, 42) = 1.77, P = 0.17 

Figure 5-1h Value: F(1, 14) = 7.68, P = 0.02; Virus: F(1, 14) = 1.07, P = 0.32; Value x Virus: F(1, 14) = 0.02. P = 0.90 

Figure 5-1j Value: F(1, 14) = 3.10, P = 0.10; Virus: F(1, 14) = 0.44, P = 0.52; Value x Virus: F(1, 14) = 0.69, P = 0.42 

Figure 5-2b Value: F(1, 30) = 5.85, P = 0.02; Group: F(2, 30) = 0.59, P = 0.56; Group x Value: F(2, 30) = 0.83, P = 0.44 
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Figure 5-2c Training x Group: F(6, 60) = 2.65, P = 0.02; Training: F(2.33, 46.66) = 1.78, P = 0.17; Group: F(2, 20) = 1.38, P = 0.27 

Figure 5-2d Value: F(1, 20) = 3.38, P = 0.08; Group: F(2, 20) = 0.43, P = 0.66; Group x Value: F(2, 20) = 1.36, P = 0.28 

Figure 5-2e Training: F(2.21, 46.33) = 1.38, P = 0.26; Virus: F(1, 21) = 2.50, P = 0.13; Training x Virus: F(3, 63) = 0.09, P = 0.97 

Figure 5-2h Value: F(1, 16) = 2.65, P = 0.12; Virus: F(1, 16) = 0.71, P = 0.41; Value x Virus: F(1, 16) = 0.74, P = 0.40 

Figure 5-3e Training: F(1.57, 33.00) = 73.47, P < 0.0001; Virus: F(1, 21) = 0.005, P = 0.94; Training x Virus: F(3, 63) = 0.80, P = 
0.50 

Figure 5-3f Value: F(1, 21) = 7.64, P = 0.01; Virus: F(1, 21) = 0.36, P = 0.55; Virus x Value: F(1, 21) = 0.36, P = 0.56 

Figure 5-3g t(20) =2.39; P = 0.03 

 
Supplemental Table 4: Statistical supplement for log-transformed normalized datasets. 
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Category Item Vendor Catalog # Lot # Titer 

ELISA Kit 
Highly sensitive 
corticosterone ELISA kit Enzo Life Sciences ADI-900-097 02252009C  

Viruses/Tracers AAV8-hSyn-mCherry UNC Vector Core 114472 v113707 2.6 x 1013 gc/mL 
 Fluorogold Santa Cruz Biotechnology sc-358883 A1223  

 
AAV9-Syn-FLEX-jGCaMP8s-
WPRE Addgene 162377 v118930 5 x 1012 gc/mL 

 
AAVrg-hSyn-Cre-P2A-
tdTomato Addgene 107738 v75881 1.5 x 1013 pp/mL 

 
AAV2-hSyn-DIO-hM3D(Gq)-
mCherry Addgene 44361 v97910 2.0 x 1013 gc/mL 

 
AAV2-hSyn-DIO-hM4D(Gi)-
mCherry Addgene 44362 v68359 1.5 x 1013 gc/mL 

 AAV2-hSyn-DIO-mCherry Addgene 50459 v107704  1.6 x 1013 gc/mL  
 AAV2-hSyn-DIO-mCherry Addgene 50459 v54505 1.8 x 1013 gc/mL 
 AAV2-hSyn-DIO-mCherry Addgene 50459 v122065 2.1 x 1013 gc/mL 
 AAV8-hSyn-GFP Addgene 50465 v53294 2.5 x 1013 pp/mL 
 AAV8-hSyn-DIO-eYFP Stanford Vector Core GVVC-AAV-206 7463 1 x 1013 vg/mL 
 AAV8-hSyn-DIO-ChR2-eYFP Stanford Vector Core GVVC-AAV-207 7464 7.5 x 1012 vg/mL 
 AAV-DJ-hSyn-eArch-eYFP Stanford Vector Core GVVC-AAV-146 4799 1 x 1013 gc/mL 
 AAV-DJ-hSyn-eArch-eYFP Stanford Vector Core GVVC-AAV-146 5105 9.3 x 1012 gc/mL 

 CAV2-Cre-GFP 
Plateforme de Vectorologie 
de Montpellier N/A N/A 

1.42 x 1013 
pp/mL 

 CAV2-Cre-GFP 
Plateforme de Vectorologie 
de Montpellier N/A N/A 9.6 x 1012 pp/mL 

 
AAV8-hSyn-FLEX-TVA-P2A-
GFP-2A-oG Salk Vector Core 85225 N/A 

2.53 x 1012 
gc/mL 

 
AAV8-hSyn-FLEX-TVA-P2A-
GFP-2A-oG Salk Vector Core 85225 N/A 

1.87 x 1012 
gc/mL 

 
EnvA-Gdeleted-Rabies-
mCherry Salk Vector Core 32636 N/A 1.0 x 108 TU/mL 

Antibodies 
Chicken polyclonal anti-
mCherry primary antibody Abcam ab205402 GR3368071-2, GR3271744-8  

 
Chicken polyclonal anti-GFP 
primary antibody Abcam ab13970 

1018753-7, 1018753-5, 1018753-
11, 1018753-12  

 
Living Colors Rabbit DsRed 
Polyclonal Antibody Takara Bio 632496 1904182, 2210019  

 

Goat anti-Rabbit IgG 
Secondary Antibody, Alexa 
Fluor 594 Invitrogen  A11012 2433881, 2119134  

 

Goat anti-Chicken IgY 
Secondary Antibody, Alexa 
Fluor 488 Abcam ab150169 GR3437715-3  

Supplemental Table 5: Key reagents information. 
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